login
A364678
Maximum number of primes between consecutive multiples of n, as permitted by divisibility considerations.
5
0, 1, 1, 2, 2, 2, 2, 3, 3, 4, 4, 4, 4, 4, 4, 5, 5, 6, 6, 6, 5, 7, 7, 6, 7, 7, 7, 7, 8, 7, 8, 9, 8, 10, 8, 10, 10, 10, 11, 11, 11, 10, 11, 11, 11, 12, 12, 12, 12, 13, 12, 13, 14, 13, 13, 14, 14, 15, 15, 14, 15, 15, 15, 16, 15, 15, 16, 16, 17, 16, 17, 18, 18, 18, 18, 18, 17, 19, 19, 19, 19, 20, 20, 19, 19, 20, 21, 21
OFFSET
1,4
COMMENTS
Alternatively: a(n) = the maximum number of elements of an admissible k-tuple strictly contained in (0,n) such that all elements are relatively prime to n. Recall that an admissible tuple is defined as a tuple of integers with the property that all primes p have at least one residue class that has no intersection with the tuple.
For n > 1, we have a(n) <= A023193(n-1), with equality if (but not only if) n is prime or a power of 2. The smallest n for which it is not an equality is n=14.
Conjecture 1: Every nonnegative integer appears in this sequence.
Conjecture 2: For all n, there is an infinitude of k's such that there are a(n) primes between n*k and n*(k+1).
Conjecture 2 resembles the k-tuples conjecture a.k.a. the first Hardy-Littlewood conjecture, although it is not the same.
A notable value is a(35) = 8. Compare with A000010(210) = 48. This says that between any two consecutive multiples of 210 the 48 values that are not divisible by 2, 3, 5 or 7 are equally distributed between 6 equal divisions of 210; that is, 8 are in the interval [0, 34], 8 in the interval [35, 69], etc. - Peter Munn, Feb 16 2024
EXAMPLE
Between two multiples of 15 (n and n+15), only n+1, n+2, n+4, n+7, n+8, n+11, n+13, and n+14 could possibly be prime based on divisibility by 3 and 5. However, 4 of these are even and 4 are odd, so at most 4 of them can be prime. Thus, a(15)=4.
PROG
(Python) # see Links section
CROSSREFS
Multiples of n following which the maximum number of primes occur for particular n: A005097 (2), A144769 (3), A123986 (4), A056956 (6), A007811 (10), A123985 (12), A309871 (18).
Sequence in context: A061392 A048273 A333535 * A175387 A024542 A355880
KEYWORD
nonn
AUTHOR
Brian Kehrig, Aug 24 2023
STATUS
approved