login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A342337 Number of integer partitions of n with all adjacent parts (x, y) satisfying either x = y or x = 2y. 17
1, 1, 2, 3, 4, 4, 7, 6, 9, 10, 12, 11, 19, 14, 20, 24, 27, 24, 37, 31, 44, 45, 49, 48, 71, 61, 72, 80, 92, 84, 118, 102, 128, 132, 144, 151, 191, 166, 197, 211, 244, 226, 287, 263, 313, 330, 348, 347, 435, 399, 462, 476, 524, 508, 614, 591, 674, 680, 732, 731, 890, 814, 916, 966, 1042, 1032, 1188, 1135, 1280, 1303 (list; graph; refs; listen; history; text; internal format)
OFFSET
0,3
LINKS
EXAMPLE
The a(1) = 1 through a(9) = 10 partitions:
1 2 3 4 5 6 7 8 9
11 21 22 221 33 421 44 63
111 211 2111 42 2221 422 333
1111 11111 222 22111 2222 4221
2211 211111 4211 22221
21111 1111111 22211 42111
111111 221111 222111
2111111 2211111
11111111 21111111
111111111
MAPLE
b:= proc(n, i) option remember; `if`(n=0, 1, add(b(n-j, j),
j=`if`(i=0, 1..n, select(x-> x<=n, [i, 2*i]))))
end:
a:= n-> b(n, 0):
seq(a(n), n=0..80); # Alois P. Heinz, May 24 2021
MATHEMATICA
Table[Length[Select[IntegerPartitions[n], And@@Table[#[[i]]==#[[i-1]]||#[[i-1]]==2*#[[i]], {i, 2, Length[#]}]&]], {n, 0, 30}]
(* Second program: *)
b[n_, i_] := b[n, i] = If[n == 0, 1, Sum[b[n - j, j],
{j, If[i == 0, Range[n], Select[{i, 2i}, # <= n&]]}]];
a[n_] := b[n, 0];
a /@ Range[0, 80] (* Jean-François Alcover, Jun 03 2021, after Alois P. Heinz *)
CROSSREFS
The first condition alone gives A000005 (for partitions).
The second condition alone gives A154402 (for partitions).
The Heinz numbers of these partitions are given by A342339.
A000929 counts partitions with adjacent parts x >= 2y.
A002843 counts compositions with adjacent parts x <= 2y.
A224957 counts compositions with x <= 2y and y <= 2x (strict: A342342).
A274199 counts compositions with adjacent parts x < 2y.
A342094 counts partitions with adjacent parts x <= 2y (strict: A342095).
A342096 counts partitions without adjacent x >= 2y (strict: A342097).
A342098 counts partitions with adjacent parts x > 2y.
A342330 counts compositions with x < 2y and y < 2x (strict: A342341).
A342331 counts compositions with adjacent parts x = 2y or y = 2x.
A342332 counts compositions with adjacent parts x > 2y or y > 2x.
A342333 counts compositions with adjacent parts x >= 2y or y >= 2x.
A342335 counts compositions with adjacent parts x >= 2y or y = 2x.
A342338 counts compositions with adjacent parts x < 2y and y <= 2x.
Sequence in context: A079247 A325588 A244903 * A167932 A006087 A364675
KEYWORD
nonn
AUTHOR
Gus Wiseman, Mar 10 2021
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified September 9 12:01 EDT 2024. Contains 375764 sequences. (Running on oeis4.)