login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A342340 Number of compositions of n where each part after the first is either twice, half, or equal to the prior part. 14
1, 1, 2, 4, 6, 9, 17, 24, 41, 67, 109, 173, 296, 469, 781, 1284, 2109, 3450, 5713, 9349, 15422, 25351, 41720, 68590, 112982, 185753, 305752, 503041, 827819, 1361940, 2241435, 3687742, 6068537, 9985389, 16431144, 27036576, 44489533, 73205429, 120460062, 198214516, 326161107 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,3

LINKS

Alois P. Heinz, Table of n, a(n) for n = 0..4623 (first 1001 terms from Andrew Howroyd)

EXAMPLE

The a(1) = 1 through a(6) = 17 compositions:

  (1)  (2)   (3)    (4)     (5)      (6)

       (11)  (12)   (22)    (122)    (24)

             (21)   (112)   (212)    (33)

             (111)  (121)   (221)    (42)

                    (211)   (1112)   (222)

                    (1111)  (1121)   (1122)

                            (1211)   (1212)

                            (2111)   (1221)

                            (11111)  (2112)

                                     (2121)

                                     (2211)

                                     (11112)

                                     (11121)

                                     (11211)

                                     (12111)

                                     (21111)

                                     (111111)

MAPLE

b:= proc(n, i) option remember; `if`(n=0, 1, add(

      b(n-j, j), j=`if`(i=0, {$1..n}, select(x->

       x::integer and x<=n, {i/2, i, 2*i}))))

    end:

a:= n-> b(n, 0):

seq(a(n), n=0..42);  # Alois P. Heinz, May 24 2021

MATHEMATICA

Table[Length[Select[Join@@Permutations/@IntegerPartitions[n], And@@Table[#[[i]]==#[[i-1]]||#[[i]]==2*#[[i-1]]||#[[i-1]]==2*#[[i]], {i, 2, Length[#]}]&]], {n, 0, 15}]

(* Second program: *)

b[n_, i_] := b[n, i] = If[n == 0, 1, Sum[b[n - j, j], {j, If[i == 0, Range[n], Select[ {i/2, i, 2 i}, IntegerQ[#] && # <= n &]]}]];

a[n_] := b[n, 0];

a /@ Range[0, 42] (* Jean-François Alcover, Jun 10 2021, after Alois P. Heinz *)

PROG

(PARI) seq(n)={my(M=matid(n)); for(k=1, n, for(i=1, k-1, M[i, k] = if(i%2==0, M[i/2, k-i]) + if(i*2<=k, M[i, k-i]) + if(i*3<=k, M[i*2, k-i]))); concat([1], sum(q=1, n, M[q, ]))} \\ Andrew Howroyd, Mar 13 2021

CROSSREFS

The case of partitions is A342337.

The anti-run version is A342331.

A000929 counts partitions with adjacent parts x >= 2y.

A002843 counts compositions with adjacent parts x <= 2y.

A154402 counts partitions with adjacent parts x = 2y.

A224957 counts compositions with x <= 2y and y <= 2x (strict: A342342).

A274199 counts compositions with adjacent parts x < 2y.

A342094 counts partitions with adjacent x <= 2y (strict: A342095).

A342096 counts partitions without adjacent x >= 2y (strict: A342097).

A342098 counts partitions with adjacent parts x > 2y.

A342330 counts compositions with x < 2y and y < 2x (strict: A342341).

A342332 counts compositions with adjacent parts x > 2y or y > 2x.

A342333 counts compositions with adjacent parts x >= 2y or y >= 2x.

A342334 counts compositions with adjacent parts x >= 2y or y > 2x.

A342335 counts compositions with adjacent parts x >= 2y or y = 2x.

A342338 counts compositions with adjacent parts x < 2y and y <= 2x.

Cf. A000005, A003114, A003242, A034296, A167606, A342083, A342084, A342087, A342191, A342336, A342339.

Sequence in context: A110538 A288039 A327744 * A244470 A098787 A164138

Adjacent sequences:  A342337 A342338 A342339 * A342341 A342342 A342343

KEYWORD

nonn

AUTHOR

Gus Wiseman, Mar 12 2021

EXTENSIONS

Terms a(21) and beyond from Andrew Howroyd, Mar 13 2021

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified September 16 18:26 EDT 2021. Contains 347473 sequences. (Running on oeis4.)