The OEIS mourns the passing of Jim Simons and is grateful to the Simons Foundation for its support of research in many branches of science, including the OEIS.
The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A342335 Number of compositions of n with all adjacent parts (x, y) satisfying x >= 2y or y = 2x. 14
 1, 1, 1, 3, 3, 3, 7, 9, 9, 16, 21, 22, 36, 47, 51, 77, 101, 114, 165, 217, 251, 350, 459, 540, 733, 962, 1152, 1535, 2010, 2437, 3207, 4192, 5141, 6698, 8728, 10802, 13979, 18170, 22652, 29169, 37814, 47410, 60854, 78716, 99144, 126974, 163897, 207159, 264918, 341331, 432606, 552693, 711013, 903041, 1153060 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,4 COMMENTS Also the number of compositions of n with all adjacent parts (x, y) satisfying x = 2y or y >= 2x. LINKS Andrew Howroyd, Table of n, a(n) for n = 0..1000 EXAMPLE The a(1) = 1 through a(9) = 16 compositions: (1) (2) (3) (4) (5) (6) (7) (8) (9) (12) (13) (14) (15) (16) (17) (18) (21) (121) (212) (24) (25) (26) (27) (42) (124) (125) (36) (213) (142) (215) (63) (1212) (214) (242) (126) (2121) (421) (1214) (216) (1213) (1421) (1215) (12121) (21212) (1242) (2124) (2142) (2421) (4212) (21213) (121212) (212121) MATHEMATICA Table[Length[Select[Join@@Permutations/@IntegerPartitions[n], And@@Table[#[[i]]>=2*#[[i-1]]||#[[i-1]]==2*#[[i]], {i, 2, Length[#]}]&]], {n, 0, 15}] (* Second program: *) c[n_, pred_] := Module[{M = IdentityMatrix[n], i, k}, For[k = 1, k <= n, k++, For[i = 1, i <= k-1, i++, M[[i, k]] = Sum[If[pred[j, i], M[[j, k-i]], 0], {j, 1, k-i}]]]; Sum[M[[q, All]], {q, 1, n}]]; pred[i_, j_] := i >= 2j || j == 2i; Join[{1}, c[60, pred]] (* Jean-François Alcover, Jun 10 2021, after Andrew Howroyd *) PROG (PARI) C(n, pred)={my(M=matid(n)); for(k=1, n, for(i=1, k-1, M[i, k]=sum(j=1, k-i, if(pred(j, i), M[j, k-i], 0)))); sum(q=1, n, M[q, ])} seq(n)={concat([1], C(n, (i, j)->i>=2*j || j==2*i))} \\ Andrew Howroyd, Mar 13 2021 CROSSREFS The first condition alone gives A002843, or A000929 for partitions. The second condition alone gives A154402 for partitions. The case of equality is A342331. The version not allowing equality (i.e., strict relations) is A342336. A224957 counts compositions with adjacent parts x <= 2y and y <= 2x. A224957 counts compositions with x <= 2y and y <= 2x (strict: A342342). A342094 counts partitions with adjacent parts x <= 2y (strict: A342095). A342096 counts partitions without adjacent x >= 2y (strict: A342097). A342098 counts partitions with adjacent parts x > 2y. A342330 counts compositions with x < 2y and y < 2x (strict: A342341). A342332 counts compositions with adjacent parts x > 2y or y > 2x. A342333 counts compositions with adjacent parts x >= 2y or y >= 2x. A342337 counts partitions with adjacent parts x = y or x = 2y. A342338 counts compositions with adjacent parts x < 2y and y <= 2x. A342342 counts strict compositions with adjacent parts x <= 2y and y <= 2x. Cf. A003114, A003242, A034296, A167606, A342083, A342084, A342087, A342191, A342334, A342340. Sequence in context: A227826 A268127 A200076 * A137438 A098524 A143015 Adjacent sequences: A342332 A342333 A342334 * A342336 A342337 A342338 KEYWORD nonn AUTHOR Gus Wiseman, Mar 10 2021 EXTENSIONS More terms from Joerg Arndt, Mar 12 2021 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified May 27 00:17 EDT 2024. Contains 372847 sequences. (Running on oeis4.)