The OEIS mourns the passing of Jim Simons and is grateful to the Simons Foundation for its support of research in many branches of science, including the OEIS.
login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A342335 Number of compositions of n with all adjacent parts (x, y) satisfying x >= 2y or y = 2x. 14
1, 1, 1, 3, 3, 3, 7, 9, 9, 16, 21, 22, 36, 47, 51, 77, 101, 114, 165, 217, 251, 350, 459, 540, 733, 962, 1152, 1535, 2010, 2437, 3207, 4192, 5141, 6698, 8728, 10802, 13979, 18170, 22652, 29169, 37814, 47410, 60854, 78716, 99144, 126974, 163897, 207159, 264918, 341331, 432606, 552693, 711013, 903041, 1153060 (list; graph; refs; listen; history; text; internal format)
OFFSET
0,4
COMMENTS
Also the number of compositions of n with all adjacent parts (x, y) satisfying x = 2y or y >= 2x.
LINKS
EXAMPLE
The a(1) = 1 through a(9) = 16 compositions:
(1) (2) (3) (4) (5) (6) (7) (8) (9)
(12) (13) (14) (15) (16) (17) (18)
(21) (121) (212) (24) (25) (26) (27)
(42) (124) (125) (36)
(213) (142) (215) (63)
(1212) (214) (242) (126)
(2121) (421) (1214) (216)
(1213) (1421) (1215)
(12121) (21212) (1242)
(2124)
(2142)
(2421)
(4212)
(21213)
(121212)
(212121)
MATHEMATICA
Table[Length[Select[Join@@Permutations/@IntegerPartitions[n], And@@Table[#[[i]]>=2*#[[i-1]]||#[[i-1]]==2*#[[i]], {i, 2, Length[#]}]&]], {n, 0, 15}]
(* Second program: *)
c[n_, pred_] := Module[{M = IdentityMatrix[n], i, k}, For[k = 1, k <= n, k++, For[i = 1, i <= k-1, i++, M[[i, k]] = Sum[If[pred[j, i], M[[j, k-i]], 0], {j, 1, k-i}]]]; Sum[M[[q, All]], {q, 1, n}]];
pred[i_, j_] := i >= 2j || j == 2i;
Join[{1}, c[60, pred]] (* Jean-François Alcover, Jun 10 2021, after Andrew Howroyd *)
PROG
(PARI)
C(n, pred)={my(M=matid(n)); for(k=1, n, for(i=1, k-1, M[i, k]=sum(j=1, k-i, if(pred(j, i), M[j, k-i], 0)))); sum(q=1, n, M[q, ])}
seq(n)={concat([1], C(n, (i, j)->i>=2*j || j==2*i))} \\ Andrew Howroyd, Mar 13 2021
CROSSREFS
The first condition alone gives A002843, or A000929 for partitions.
The second condition alone gives A154402 for partitions.
The case of equality is A342331.
The version not allowing equality (i.e., strict relations) is A342336.
A224957 counts compositions with adjacent parts x <= 2y and y <= 2x.
A224957 counts compositions with x <= 2y and y <= 2x (strict: A342342).
A342094 counts partitions with adjacent parts x <= 2y (strict: A342095).
A342096 counts partitions without adjacent x >= 2y (strict: A342097).
A342098 counts partitions with adjacent parts x > 2y.
A342330 counts compositions with x < 2y and y < 2x (strict: A342341).
A342332 counts compositions with adjacent parts x > 2y or y > 2x.
A342333 counts compositions with adjacent parts x >= 2y or y >= 2x.
A342337 counts partitions with adjacent parts x = y or x = 2y.
A342338 counts compositions with adjacent parts x < 2y and y <= 2x.
A342342 counts strict compositions with adjacent parts x <= 2y and y <= 2x.
Sequence in context: A227826 A268127 A200076 * A137438 A098524 A143015
KEYWORD
nonn
AUTHOR
Gus Wiseman, Mar 10 2021
EXTENSIONS
More terms from Joerg Arndt, Mar 12 2021
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified May 27 00:17 EDT 2024. Contains 372847 sequences. (Running on oeis4.)