login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A268127 a(n) = (A005704(n)-A006047(n))/3. 3
0, 0, 0, 1, 1, 1, 3, 3, 3, 7, 8, 9, 12, 13, 14, 19, 20, 21, 30, 33, 36, 42, 45, 48, 57, 60, 63, 79, 86, 93, 103, 111, 119, 132, 141, 150, 168, 180, 192, 209, 222, 235, 257, 271, 285, 316, 335, 354, 380, 400, 420, 453, 474, 495, 543, 573, 603, 639, 672, 705, 747 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,7

LINKS

Table of n, a(n) for n=0..60.

G. E. Andrews, A. S. Fraenkel, and J. A. Sellers, Characterizing the number of m-ary partitions modulo m, The American Mathematical Monthly, Vol. 122, No. 9 (November 2015), pp. 880-885.

G. E. Andrews, A. S. Fraenkel, and J. A. Sellers, Characterizing the number of m-ary partitions modulo m.

Tom Edgar, The distribution of the number of parts of m-ary partitions modulo m., arXiv:1603.00085 [math.CO], 2016.

FORMULA

Let b(0) = 1 and b(n) = b(n-1) + b(floor(n/3)) and let c(n) = Product_{i=0..k}(n_i+1) where n = Sum_{i=0..k}n_i*3^i is the ternary representation of n. Then a(n) = (1/3)*(b(n) - c(n)).

MATHEMATICA

b[n_] := b[n] = If[n <= 2, n+1, b[n-1] + b[Floor[n/3]]];

c = Nest[Join[#, 2#, 3#]&, {1}, 4];

a[n_] := (b[n] - c[[n+1]])/3;

Table[a[n], {n, 0, 60}] (* Jean-Fran├žois Alcover, Dec 12 2018 *)

PROG

(Sage)

def b(n):

    A=[1]

    for i in [1..n]:

        A.append(A[i-1] + A[floor(i/3)])

    return A[n]

[(b(n)-prod(x+1 for x in n.digits(3)))/3 for n in [0..60]]

CROSSREFS

Cf. A005704, A006047, A268128.

Sequence in context: A031503 A049500 A227826 * A200076 A137438 A098524

Adjacent sequences:  A268124 A268125 A268126 * A268128 A268129 A268130

KEYWORD

nonn

AUTHOR

Tom Edgar, Jan 26 2016

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified November 17 13:33 EST 2019. Contains 329230 sequences. (Running on oeis4.)