The OEIS is supported by the many generous donors to the OEIS Foundation.

 Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 59th year, we have over 358,000 sequences, and we’ve crossed 10,300 citations (which often say “discovered thanks to the OEIS”). Other ways to Give
 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A005704 Number of partitions of 3n into powers of 3. (Formerly M0639) 22
 1, 2, 3, 5, 7, 9, 12, 15, 18, 23, 28, 33, 40, 47, 54, 63, 72, 81, 93, 105, 117, 132, 147, 162, 180, 198, 216, 239, 262, 285, 313, 341, 369, 402, 435, 468, 508, 548, 588, 635, 682, 729, 783, 837, 891, 954, 1017, 1080, 1152, 1224, 1296, 1377, 1458, 1539, 1632 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,2 COMMENTS Infinite convolution product of [1,2,3,3,3,3,3,3,3,3] aerated A000244 - 1 times, i.e., [1,2,3,3,3,3,3,3,3,3] * [1,0,0,2,0,0,3,0,0,3] * [1,0,0,0,0,0,0,0,0,2] * ... [Mats Granvik, Gary W. Adamson, Aug 07 2009] REFERENCES R. K. Guy, personal communication. N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence). LINKS T. D. Noe, Table of n, a(n) for n = 0..10000 G. E. Andrews, Congruence properties of the m-ary partition function, J. Number Theory 3 (1971), 104-110. G. E. Andrews and J. A. Sellers, Characterizing the number of p-ary partitions modulo a prime p, p. 2. C. Banderier, H.-K. Hwang, V. Ravelomanana and V. Zacharovas, Analysis of an exhaustive search algorithm in random graphs and the n^{c logn}-asymptotics, 2012. - From N. J. A. Sloane, Dec 23 2012 M. D. Hirschhorn and J. A. Sellers, A different view of m-ary partitions, Australasian J. Combin., 30 (2004), 193-196. M. D. Hirschhorn and J. A. Sellers, A different view of m-ary partitions D. Krenn, D. Ralaivaosaona, S. Wagner, The Number of Multi-Base Representations of an Integer, 2014. D. Krenn, D. Ralaivaosaona, S. Wagner, Multi-Base Representations of Integers: Asymptotic Enumeration and Central Limit Theorems, arXiv:1503.08594 [math.NT], 2015. Also in Applicable Analysis and Discrete Mathematics (2015) Vol. 9, Issue 2, 285-312. M. Latapy, Partitions of an integer into powers, DMTCS Proceedings AA (DM-CCG), 2001, 215-228. M. Latapy, Partitions of an integer into powers, DMTCS Proceedings AA (DM-CCG), 2001, 215-228. [Cached copy, with permission] O. J. Rodseth, Some arithmetical properties of m-ary partitions, Proc. Camb. Phil. Soc. 68 (1970), 447-453. O. J. Rodseth and J. A. Sellers, On m-ary partition function congruences: A fresh look at a past problem, J. Number Theory 87 (2001), 270-281. O. J. Rodseth and J. A. Sellers, On a Restricted m-Non-Squashing Partition Function, Journal of Integer Sequences, Vol. 8 (2005), Article 05.5.4. FORMULA a(n) = a(n-1)+a(floor(n/3)). Coefficient of x^(3*n) in prod(k>=0, 1/(1-x^(3^k))). Also, coefficient of x^n in prod(k>=0, 1/(1-x^(3^k)))/(1-x). - Benoit Cloitre, Nov 28 2002 a(n) mod 3 = binomial(2n, n) mod 3. - Benoit Cloitre, Jan 04 2004 Let T(x) be the g.f., then T(x)=(1-x^3)/(1-x)^2*T(x^3). [Joerg Arndt, May 12 2010] MATHEMATICA Fold[Append[#1, Total[Take[Flatten[Transpose[{#1, #1, #1}]], #2]]] &, {1}, Range[2, 55]] (* Birkas Gyorgy, Apr 18 2011 *) a[n_] := a[n] = If[n <= 2, n + 1, a[n - 1] + a[Floor[n/3]]]; Array[a, 101, 0] (* T. D. Noe, Apr 18 2011 *) PROG (Python) from functools import lru_cache @lru_cache(maxsize=None) def A005704(n): return A005704(n-1)+A005704(n//3) if n else 1 # Chai Wah Wu, Sep 21 2022 CROSSREFS Cf. A000041, A000123, A005705, A005706, A018819. Cf. A006996. Sequence in context: A117930 A090632 A022786 * A022782 A283968 A025692 Adjacent sequences: A005701 A005702 A005703 * A005705 A005706 A005707 KEYWORD nonn AUTHOR EXTENSIONS Formula and more terms from Henry Bottomley, Apr 30 2001 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified December 3 07:52 EST 2022. Contains 358512 sequences. (Running on oeis4.)