login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A090632
Given n boxes labeled 1..n, such that box i weighs 3i grams and can support a total weight of i grams; a(n) = number of stacks of boxes that can be formed such that no box is squashed.
4
1, 2, 3, 5, 7, 9, 12, 15, 18, 22, 26, 30, 36, 42, 48, 56, 64, 72, 82, 92, 102, 114, 126, 138, 153, 168, 183, 201, 219, 237, 258, 279, 300, 324, 348, 372, 400, 428, 456, 488, 520, 552, 588, 624, 660, 700, 740, 780, 826, 872, 918, 970, 1022, 1074, 1132, 1190, 1248
OFFSET
0,2
LINKS
Amanda Folsom et al, On a general class of non-squashing partitions, Discrete Mathematics 339.5 (2016): 1482-1506.
Youkow Homma, Jun Hwan Ryu and Benjamin Tong, Sequence non-squashing partitions, Slides from a talk, Jul 24 2014.
Oystein J. Rodseth, Sloane's box stacking problem, Discrete Math. 306 (2006), no. 16, 2005-2009.
N. J. A. Sloane and J. A. Sellers, On non-squashing partitions, Discrete Math., 294 (2005), 259-274.
FORMULA
More generally, let a_k(n), k > 1, denote the number of stacks of boxes that can be formed such that no box is squashed wherein we have n boxes labeled 1..n such that box i weighs k*i grams and can support a total weight of i grams. Then a_k(n) has g.f. 1/((1-x)^2*Product_{i>=0} (1-x^(k*(k+1)^i))). - George Andrews, James A. Sellers and Vladeta Jovovic, May 26 2005 (corrected May 31 2005)
MAPLE
p:=1/(1-q)^2/product((1-q^(3*4^i)), i=0..5): s:=series(p, q, 100): for n from 0 to 99 do printf(`%d, `, coeff(s, q, n)) od: # James A. Sellers, Dec 23 2005
CROSSREFS
Bisection of A064986.
Sequence in context: A022794 A025693 A117930 * A022786 A005704 A022782
KEYWORD
nonn
AUTHOR
N. J. A. Sloane, Dec 13 2003
EXTENSIONS
More terms from Vladeta Jovovic, May 22 2005
Further terms from James A. Sellers, Dec 23 2005
STATUS
approved