login
A090634
Start with the sequence [1, 1/2, 1/3, ..., 1/n]; form new sequence of n-1 terms by taking averages of successive terms; repeat until reach a single number F(n); a(n) = denominator of F(n).
5
1, 4, 12, 32, 80, 64, 448, 1024, 2304, 5120, 11264, 8192, 53248, 114688, 245760, 524288, 1114112, 262144, 4980736, 2097152, 3145728, 46137344, 96468992, 67108864, 419430400, 872415232, 1811939328, 3758096384, 7784628224, 5368709120, 33285996544, 68719476736
OFFSET
1,2
COMMENTS
a(n) is the denominator of the resistance of the n-dimensional cube between two adjacent nodes, when the resistance of each edge is 1. See Nedermeyer and Smorodinsky. - Michel Marcus, Sep 13 2019
LINKS
Alois P. Heinz, Table of n, a(n) for n = 1..3312 (first 200 terms from T. D. Noe)
F. Nedermeyer and Y. Smorodinsky, Resistance in the multidimensional cube, Quantum, Sept/October 1996, pp. 12-15 (beware file is 75Mb).
Putnam Competition, Problem B2, Solutions, 2003.
FORMULA
a(n) = A131135(n)/2. - Paul Barry, Jun 17 2007
a(n) = denominator(2*(1-1/2^n)/n) (conjectured). - Michel Marcus, Sep 12 2019
EXAMPLE
n=3: [1, 1/2, 1/3] -> [3/4, 5/6] -> [7/12], so F(3) = 7/12. Sequence of F(n)'s begins 1, 3/4, 7/12, 15/32, 31/80, 21/64, 127/448, 255/1024, ...
MAPLE
a:= n-> denom(coeff(series(2*log((x/2-1)/(x-1)), x, n+1), x, n)):
seq(a(n), n=1..35); # Alois P. Heinz, Aug 02 2018
MATHEMATICA
f[s_list] := Table[(s[[k]] + s[[k+1]])/2, {k, 1, Length[s]-1}];
a[n_] := Nest[f, 1/Range[n], n-1] // First // Denominator;
Array[a, 40] (* Jean-François Alcover, Aug 02 2018 *)
PROG
(Haskell)
import Data.Ratio (denominator, (%))
a090634 n = denominator z where
[z] = (until ((== 1) . length) avg) $ map (1 %) [1..n]
avg xs = zipWith (\x x' -> (x + x') / 2) (tail xs) xs
-- Reinhard Zumkeller, Dec 08 2011
CROSSREFS
Cf. A090633 (numerators).
Sequence in context: A118885 A097392 A373046 * A260186 A085750 A001787
KEYWORD
nonn,frac
AUTHOR
N. J. A. Sloane, Dec 13 2003
STATUS
approved