OFFSET
0,2
COMMENTS
LINKS
G. C. Greubel, Table of n, a(n) for n = 0..2500
Michael Somos, Introduction to Ramanujan theta functions
Eric Weisstein's World of Mathematics, Ramanujan Theta Functions
FORMULA
Expansion of (eta(q) / eta(q^16))^4 * (eta(q^8) / eta(q^2))^10 in powers of q.
Euler transform of period 16 sequence [ -4, 6, -4, 6, -4, 6, -4, -4, -4, 6, -4, 6, -4, 6, -4, 0, ...].
G.f. is a period 1 Fourier series which satisfies f(-1 / (16 t)) = (1/4) g(t) where q = exp(2 Pi i t) and g() is the g.f. for A216060.
a(n) ~ (-1)^n * exp(Pi*sqrt(2*n)) / (32 * 2^(1/4) * n^(3/4)). - Vaclav Kotesovec, Nov 15 2017
EXAMPLE
G.f. = 1 - 4*x + 12*x^2 - 32*x^3 + 80*x^4 - 184*x^5 + 400*x^6 - 832*x^7 + ...
MATHEMATICA
a[ n_] := SeriesCoefficient[ (EllipticTheta[ 3, 0, q^4] / EllipticTheta[ 3, 0, q])^2, {q, 0, n}];
PROG
(PARI) {a(n) = my(A); if( n<0, 0, A = x * O(x^n); polcoeff( (eta(x + A) / eta(x^16 + A))^4 * (eta(x^8 + A) / eta(x^2 + A))^10, n))};
CROSSREFS
KEYWORD
sign
AUTHOR
Michael Somos, Jul 17 2015
STATUS
approved