login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A216060 Expansion of (phi(q) / phi(q^4))^2 in powers of q where phi() is a Ramanujan theta function. 2
1, 4, 4, 0, 0, -8, -16, 0, 0, 20, 56, 0, 0, -40, -160, 0, 0, 72, 404, 0, 0, -128, -944, 0, 0, 220, 2072, 0, 0, -360, -4320, 0, 0, 576, 8648, 0, 0, -904, -16720, 0, 0, 1384, 31360, 0, 0, -2088, -57312, 0, 0, 3108, 102364, 0, 0, -4552, -179104, 0, 0, 6592 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,2

COMMENTS

Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).

LINKS

G. C. Greubel, Table of n, a(n) for n = 0..1000

M. Somos, Introduction to Ramanujan theta functions

Eric Weisstein's World of Mathematics, Ramanujan Theta Functions

FORMULA

Expansion of (eta(q^2)^5 * eta(q^16)^2 / (eta(q)^2 * eta(q^8)^5))^2 in powers of q.

Euler transform of period 16 sequence [ 4, -6, 4, -6, 4, -6, 4, 4, 4, -6, 4, -6, 4, -6, 4, 0, ...].

a(4*n) = 0 unless n=0. a(4*n + 3) = 0. a(4*n + 1) = 4 * A079006(n). a(4*n + 2) = 4 * A001938(n).

Convolution square of A208274.

EXAMPLE

1 + 4*q + 4*q^2 - 8*q^5 - 16*q^6 + 20*q^9 + 56*q^10 - 40*q^13 - 160*q^14 + ...

MATHEMATICA

a[n_]:= SeriesCoefficient[(EllipticTheta[3, 0, q]/EllipticTheta[3, 0, q^4])^2, {q, 0, n}]; Table[a[n], {n, 0, 50}] (* G. C. Greubel, Dec 04 2017 *)

PROG

(PARI) {a(n) = local(A); if( n<0, 0, A = x * O(x^n); polcoeff( (eta(x^2 + A)^5 * eta(x^16 + A)^2 / (eta(x + A)^2 * eta(x^8 + A)^5))^2, n))}

CROSSREFS

Cf. A001938, A079006, A208274.

Sequence in context: A282289 A291696 A291649 * A230278 A190113 A165727

Adjacent sequences:  A216057 A216058 A216059 * A216061 A216062 A216063

KEYWORD

sign

AUTHOR

Michael Somos, Aug 31 2012

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy .

Last modified February 18 17:08 EST 2018. Contains 299325 sequences. (Running on oeis4.)