login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A283968
a(n) = a(n-1) + 1 + floor(n*(3 + sqrt(5))/2), a(0) = 1.
4
1, 2, 3, 5, 7, 9, 12, 15, 19, 23, 27, 32, 37, 42, 48, 54, 61, 68, 75, 83, 91, 100, 109, 118, 128, 138, 148, 159, 170, 182, 194, 206, 219, 232, 245, 259, 273, 288, 303, 318, 334, 350, 367, 384, 401, 419, 437, 455, 474, 493, 513, 533, 553, 574, 595, 617, 639
OFFSET
0,2
COMMENTS
This is row 1 of the transposable interspersion A283938.
LINKS
FORMULA
a(n) = a(n-1) + 1 + floor(n*(3 + sqrt(5))/2), a(0) = 1.
MATHEMATICA
r = GoldenRatio^2; z = 120;
s[0] = 1; s[n_] := s[n] = s[n - 1] + 1 + Floor[n*r];
Table[n + 1 + Sum[Floor[(n - k)/r], {k, 0, n}], {n, 0, z}] (* A283968 *)
Table[s[n], {n, 0, z}] (* A283969 *)
PROG
(PARI) r = (3 + sqrt(5))/2;
a(n) = n + 1 + sum(k=0, n, floor((n - k)/r));
for(n=0, 30, print1(a(n), ", ")) \\ Indranil Ghosh, Mar 19 2017
(Python)
from sympy import sqrt
import math
def a(n):
return n + 1 + sum([int(math.floor((n - k)/r)) for k in range(n + 1)])
print([a(n) for n in range(61)]) # Indranil Ghosh, Mar 19 2017
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Clark Kimberling, Mar 18 2017
STATUS
approved