The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A283968 a(n) = a(n-1) + 1 + floor(n*(3 + sqrt(5))/2), a(0) = 1. 4
 1, 2, 3, 5, 7, 9, 12, 15, 19, 23, 27, 32, 37, 42, 48, 54, 61, 68, 75, 83, 91, 100, 109, 118, 128, 138, 148, 159, 170, 182, 194, 206, 219, 232, 245, 259, 273, 288, 303, 318, 334, 350, 367, 384, 401, 419, 437, 455, 474, 493, 513, 533, 553, 574, 595, 617, 639 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,2 COMMENTS This is row 1 of the transposable interspersion A283938. LINKS Clark Kimberling, Table of n, a(n) for n = 0..1000 FORMULA a(n) = a(n-1) + 1 + floor(n*(3 + sqrt(5))/2), a(0) = 1. MATHEMATICA r = GoldenRatio^2; z = 120; s[0] = 1; s[n_] := s[n] = s[n - 1] + 1 + Floor[n*r]; Table[n + 1 + Sum[Floor[(n - k)/r], {k, 0, n}], {n, 0, z}] (* A283968 *) Table[s[n], {n, 0, z}] (* A283969 *) PROG (PARI) r = (3 + sqrt(5))/2; a(n) = n + 1 + sum(k=0, n, floor((n - k)/r)); for(n=0, 30, print1(a(n), ", ")) \\ Indranil Ghosh, Mar 19 2017 (Python) from sympy import sqrt import math def a(n):     return n + 1 + sum([int(math.floor((n - k)/r)) for k in range(n + 1)]) print([a(n) for n in range(61)]) # Indranil Ghosh, Mar 19 2017 CROSSREFS Cf. A104457, A283938, A283961, A283969. Sequence in context: A022786 A005704 A022782 * A025692 A137285 A062441 Adjacent sequences:  A283965 A283966 A283967 * A283969 A283970 A283971 KEYWORD nonn,easy AUTHOR Clark Kimberling, Mar 18 2017 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified September 21 21:32 EDT 2021. Contains 347605 sequences. (Running on oeis4.)