login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A137438
Number of conjugate-congruent partitions of n.
0
1, 0, 3, 3, 3, 7, 9, 12, 14, 22, 30, 39, 41, 57, 86, 87, 121, 179, 164, 225, 300, 362, 433, 571, 624, 846, 968, 1134, 1391, 1902, 1992, 2407, 3043, 3688, 4321, 5145, 5811, 7277, 8627, 10234, 11895, 14730, 16091, 19571, 24026, 27312, 31490, 37119, 43197, 52256, 59349, 68981, 79711, 94935, 108360, 126301, 147204, 169964, 193594, 227147
OFFSET
1,3
COMMENTS
See reference for precise definition.
Let P be a partition of n and let Q denote its conjugate partition. Then P is said to be conjugate-congruent if there is an integer m>1 such that both P and Q give the same set R(P,m) of residues when their parts are reduced modulo m, where R(P,m) contains less than m elements. - Augustine O. Munagi, Dec 18 2008
LINKS
A. O. Munagi, Pairing conjugate partitions by residue classes, Discrete Math., 308 (2008), 2492-2501.
Eric Weisstein's World of Mathematics, Conjugate Partition.
EXAMPLE
a(8) = 12: the 12 conjugate-congruent partitions of 8 are shown below, in conjugate pairs followed by their common residues. 8/1+1+1+1+1+1+1+1 by 1 mod 7, 1+7/1+1+1+1+1+1+2 by 1,2 mod 5, 2+6/1+1+1+1+2+2 by 1,2 mod 5, 4+4/2+2+2+2 by 0 mod 2, 1+1+6/1+1+1+1+1+3 by 0,1 mod 3, 2+3+3/2+3+3 by 0,2 mod 3, 1+1+2+4/1+1+2+4 by 1,2 mod 3. - Augustine O. Munagi, Dec 18 2008
MAPLE
with(combinat): isconjcong:=proc(P::partition) local m; option remember; if P[ -1]>=conjpart(P)[ -1] then for m from 2 to P[ -1]+1 do if {op(P mod m)}={op(conjpart(P) mod m)} and nops({op(P mod m)})<m then return true; end if; end do; else for m from 2 to conjpart(P)[ -1]+1 do if {op(P mod m)}={op(conjpart(P) mod m)} and nops({op(P mod m)})<m then return true; end if; end do; end if; false; end proc: seq(nops(select(isconjcong, partition(n))), n=1..30); # Augustine O. Munagi, Dec 18 2008
MATHEMATICA
ConjugatePartition[e_List] := Length /@ Most[NestWhileList[Function[{s}, Select[s - 1, # > 0 &]], e, # =!= {} &]]; (* this ConjugatePartition code is due to Arnoud B. in MathWorld (see link) *)
isconjcong[P_] := isconjcong[P] = Module[{m, Q = ConjugatePartition[P]}, If[P[[1]] >= Q[[1]], For[m = 2, m <= P[[ 1]] + 1, m++, If[Union@Mod[P, m] == Union@Mod[Q, m] && Length[Union@Mod[P, m]] < m, Return[True]]], For[m = 2, m <= Q[[1]] + 1, m++, If[Union@Mod[P, m] == Union@Mod[Q, m] && Length[Union@Mod[P, m]] < m, Return[True]]]]; False];
a[n_] := a[n] = Length[Select[IntegerPartitions[n], isconjcong]];
Table[Print[n, " ", a[n]]; a[n], {n, 1, 60}] (* Jean-François Alcover, Jul 19 2024, after Maple code *)
CROSSREFS
Sequence in context: A268127 A200076 A342335 * A098524 A143015 A295671
KEYWORD
nonn
AUTHOR
N. J. A. Sloane May 07 2008
EXTENSIONS
a(36)-a(40) from Augustine O. Munagi, Dec 18 2008
a(41)-a(60) from Jean-François Alcover, Jul 19 2024
STATUS
approved