Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #18 Jul 19 2024 12:03:37
%S 1,0,3,3,3,7,9,12,14,22,30,39,41,57,86,87,121,179,164,225,300,362,433,
%T 571,624,846,968,1134,1391,1902,1992,2407,3043,3688,4321,5145,5811,
%U 7277,8627,10234,11895,14730,16091,19571,24026,27312,31490,37119,43197,52256,59349,68981,79711,94935,108360,126301,147204,169964,193594,227147
%N Number of conjugate-congruent partitions of n.
%C See reference for precise definition.
%C Let P be a partition of n and let Q denote its conjugate partition. Then P is said to be conjugate-congruent if there is an integer m>1 such that both P and Q give the same set R(P,m) of residues when their parts are reduced modulo m, where R(P,m) contains less than m elements. - _Augustine O. Munagi_, Dec 18 2008
%H A. O. Munagi, <a href="http://dx.doi.org/10.1016/j.disc.2007.05.022">Pairing conjugate partitions by residue classes</a>, Discrete Math., 308 (2008), 2492-2501.
%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/ConjugatePartition.html">Conjugate Partition</a>.
%e a(8) = 12: the 12 conjugate-congruent partitions of 8 are shown below, in conjugate pairs followed by their common residues. 8/1+1+1+1+1+1+1+1 by 1 mod 7, 1+7/1+1+1+1+1+1+2 by 1,2 mod 5, 2+6/1+1+1+1+2+2 by 1,2 mod 5, 4+4/2+2+2+2 by 0 mod 2, 1+1+6/1+1+1+1+1+3 by 0,1 mod 3, 2+3+3/2+3+3 by 0,2 mod 3, 1+1+2+4/1+1+2+4 by 1,2 mod 3. - _Augustine O. Munagi_, Dec 18 2008
%p with(combinat): isconjcong:=proc(P::partition) local m; option remember; if P[ -1]>=conjpart(P)[ -1] then for m from 2 to P[ -1]+1 do if {op(P mod m)}={op(conjpart(P) mod m)} and nops({op(P mod m)})<m then return true; end if; end do; else for m from 2 to conjpart(P)[ -1]+1 do if {op(P mod m)}={op(conjpart(P) mod m)} and nops({op(P mod m)})<m then return true; end if; end do; end if; false; end proc: seq(nops(select(isconjcong,partition(n))),n=1..30); # _Augustine O. Munagi_, Dec 18 2008
%t ConjugatePartition[e_List] := Length /@ Most[NestWhileList[Function[{s}, Select[s - 1, # > 0 &]], e, # =!= {} &]]; (* this ConjugatePartition code is due to Arnoud B. in MathWorld (see link) *)
%t isconjcong[P_] := isconjcong[P] = Module[{m, Q = ConjugatePartition[P]}, If[P[[1]] >= Q[[1]], For[m = 2, m <= P[[ 1]] + 1, m++, If[Union@Mod[P, m] == Union@Mod[Q, m] && Length[Union@Mod[P, m]] < m, Return[True]]], For[m = 2, m <= Q[[1]] + 1, m++, If[Union@Mod[P, m] == Union@Mod[Q, m] && Length[Union@Mod[P, m]] < m, Return[True]]]]; False];
%t a[n_] := a[n] = Length[Select[IntegerPartitions[n], isconjcong]];
%t Table[Print[n, " ", a[n]]; a[n], {n, 1, 60}] (* _Jean-François Alcover_, Jul 19 2024, after Maple code *)
%K nonn
%O 1,3
%A _N. J. A. Sloane_ May 07 2008
%E a(36)-a(40) from _Augustine O. Munagi_, Dec 18 2008
%E a(41)-a(60) from _Jean-François Alcover_, Jul 19 2024