login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A154402 Inverse Moebius transform of Fredholm-Rueppel sequence, cf. A036987. 30
1, 1, 2, 1, 1, 2, 2, 1, 2, 1, 1, 2, 1, 2, 3, 1, 1, 2, 1, 1, 3, 1, 1, 2, 1, 1, 2, 2, 1, 3, 2, 1, 2, 1, 2, 2, 1, 1, 2, 1, 1, 3, 1, 1, 3, 1, 1, 2, 2, 1, 2, 1, 1, 2, 1, 2, 2, 1, 1, 3, 1, 2, 4, 1, 1, 2, 1, 1, 2, 2, 1, 2, 1, 1, 3, 1, 2, 2, 1, 1, 2, 1, 1, 3, 1, 1, 2, 1, 1, 3, 2, 1, 3, 1, 1, 2, 1, 2, 2, 1, 1, 2, 1, 1, 4 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,3

COMMENTS

Number of ways to write n as a sum a_1 + ... + a_k where the a_i are positive integers and a_i = 2 * a_{i-1}, cf. A000929.

Number of divisors of n of the form 2^k - 1 (A000225) for k >= 1. - Jeffrey Shallit, Jan 23 2017

LINKS

Antti Karttunen, Table of n, a(n) for n = 1..65537 (first 10000 terms from Robert Israel)

FORMULA

G.f.: Sum_{k>0} x^(2^k-1)/(1-x^(2^k-1)).

From Antti Karttunen, Jun 11 2018: (Start)

a(n) = Sum_{d|n} A036987(d).

a(n) = A305426(n) + A036987(n).

(End)

MAPLE

N:= 200: # to get a(1)..a(N)

A:= Vector(N):

for k from 1 do

   t:= 2^k-1;

   if t > N then break fi;

   R:= [seq(i, i=t..N, t)];

   A[R]:= map(`+`, A[R], 1)

od:

convert(A, list); # Robert Israel, Jan 23 2017

MATHEMATICA

Table[DivisorSum[n, 1 &, IntegerQ@ Log2[# + 1] &], {n, 105}] (* Michael De Vlieger, Jun 11 2018 *)

PROG

(PARI)

A209229(n) = (n && !bitand(n, n-1));

A036987(n) = A209229(1+n);

A154402(n) = sumdiv(n, d, A036987(d)); \\ Antti Karttunen, Jun 11 2018

CROSSREFS

Cf. A000225, A001511, A036987, A161790 (positions of 1's), A305426.

Cf. also A305436.

Sequence in context: A060236 A006345 A122497 * A210682 A293433 A177025

Adjacent sequences:  A154399 A154400 A154401 * A154403 A154404 A154405

KEYWORD

easy,nonn

AUTHOR

Vladeta Jovovic, Jan 08 2009

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified April 14 12:04 EDT 2021. Contains 342949 sequences. (Running on oeis4.)