OFFSET
1,2
COMMENTS
Numbers which are not multiple of 2^k-1, k > 1. Because 2^k-1 = 1+2+...+2^(k-1), these numbers are also not the sum of positive integers in a geometric progression with common ratio 2 (cf. the primes A000040 which satisfy a similar property with arithmetic progressions with common difference 2). - Jean-Christophe Hervé, Jun 19 2014
Also A154402(a(n)) = 1. - Antti Karttunen, Jun 11 2018
LINKS
Diana L. Mecum, Table of n, a(n) for n = 1..2000
MATHEMATICA
DivisorList=Drop[Table[2^k-1, {k, 1, 20}], 1]
A161790=Union[Table[If[Length[Join[DivisorList, Drop[Divisors[n], 1]]]==Length[Union[DivisorList, Drop[Divisors[n], 1]]], n, ], {n, 1, 5000}]]
(* Second program: *)
Position[Table[DivisorSum[n, 1 &, IntegerQ@ Log2[# + 1] &], {n, 143}], 1][[All, 1]] (* Michael De Vlieger, Jun 11 2018 *)
CROSSREFS
KEYWORD
nonn
AUTHOR
Leroy Quet, Jun 19 2009
STATUS
approved