login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A161791
Numbers k such that if k = a*b, then a+b = reversal(k) for some integers a,b > 1.
1
4, 72, 81, 94, 130, 994, 1210, 1930, 3420, 3640, 3910, 7420, 9360, 9994, 12600, 15300, 19930, 38520, 68800, 98010, 99220, 99994, 196200, 199930, 316710, 389520, 510300, 576900, 644400, 698620, 788310, 871200, 923400, 937210, 999994, 1020100, 1999930, 3246120, 3490200, 3899520
OFFSET
1,1
COMMENTS
Here, reversal(k), is k written backwards in decimal with leading zeros omitted. - Sean A. Irvine, Sep 15 2019
The sequence is infinite because 94, 994, 9994, ... , 99..94, ... are terms, (999..94 = 2 * 49..97 and 2 + 499..97 = 499..99). Also the numbers of form 130, 1930, 19930, ...., 199...930, ... are terms (130 = 5 * 26, 1930 = 5 * 386, 19930 = 5 * 3986, 199930 = 5 * 39986, ...). - Marius A. Burtea, Sep 16 2019
A third family: 38520, 389520, 3899520, ... , 389...9520, ... are terms because 38520 = 15 * 2568 and 15 + 2568 = 2583, also 389..9520 = 15 * 259..968 and 15 + 259..968 = 259..983. - Bernard Schott, Sep 16 2019
Another family: 3246120, 32406120, 324006120, 3240006120, 32400006120, ... In fact, 3240..06120 = 15 * 2160..0408 and 15 + 2160..0408 = 2160..0423, reversal of 3240..06120. - Bruno Berselli, Sep 17 2019
LINKS
Giovanni Resta, Table of n, a(n) for n = 1..208 (terms < 10^12, first 97 terms from Sean A. Irvine)
Sean A. Irvine, Java program (github)
EXAMPLE
94 is in the list because 94 = 2 * 47 and 2 + 47 = 49 (reversal of 94).
Similarly, 3420 = 15 * 228 and 15 + 228 = 243 (reversal of 3420).
PROG
(PARI) isok(m) = {my(rm = fromdigits(Vecrev(digits(m)))); fordiv(m, d, if (d + m/d == rm, return (1)); ); return (0); } \\ Michel Marcus, Sep 16 2019
(Magma) [k: k in [1..4000000]| IsSquare(Seqint(Reverse(Intseq(k)))^2-4*k)]; // Marius A. Burtea, Sep 16 2019
CROSSREFS
Cf. A004086.
Sequence in context: A133003 A358293 A340917 * A132097 A128062 A336253
KEYWORD
nonn,base
AUTHOR
Claudio Meller, Jun 19 2009
EXTENSIONS
Title improved, corrected and extended by Sean A. Irvine, Sep 15 2019
STATUS
approved