login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A132097
Denominators of Blandin-Diaz compositional Bernoulli numbers (B^Z)_1,n.
4
1, 4, 72, 96, 21600, 640, 5080320, 580608, 326592000, 20736000, 2529128448, 1094860800, 1298164008960000, 399435079680000, 11298306539520000, 231760134144000, 48978158848819200000, 768284844687360000, 81541143706048266240000, 1009797445276139520000, 467359502609929273344000000
OFFSET
0,2
LINKS
Hector Blandin and Rafael Diaz, Compositional Bernoulli numbers, arXiv:0708.0809 [math.CO], 2007-2008, p. 9, 1st table.
FORMULA
a(n) = denominator(f(n)), where f(0) = 1, f(n) = -Sum_{k=0..n-1} f(k) * binomial(n,k) / (n-k+1)^2. - Daniel Suteu, Feb 23 2018
EXAMPLE
1, -1/4, 1/72, 1/96, 61/21600, -1/640, -12491/5080320, -479/680608.
MATHEMATICA
nn = 21; A = Inverse[Table[Table[If[n >= k, Binomial[n - 1, k - 1]/(n - k + 1)^2, 0], {k, 1, nn}], {n, 1, nn}]]; Denominator[A[[All, 1]]] (* Mats Granvik, Feb 03 2018 *)
CROSSREFS
Numerators are A132096.
Sequence in context: A358293 A340917 A161791 * A128062 A336253 A227248
KEYWORD
frac,nonn
AUTHOR
Jonathan Vos Post, Aug 09 2007
STATUS
approved