

A340917


Integers m that have at least one divisor d such that reverse(d+m/d) is a substring of m.


1



4, 72, 81, 94, 114, 130, 132, 148, 168, 204, 231, 236, 245, 272, 294, 414, 448, 456, 498, 518, 585, 594, 756, 792, 836, 867, 936, 988, 994, 1056, 1127, 1170, 1210, 1221, 1271, 1281, 1380, 1478, 1608, 1680, 1748, 1768, 1782, 1798, 1887, 1914, 1930, 1938, 1948, 1960
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,1


COMMENTS

These are the resulting strings in A339403.


LINKS



EXAMPLE

204 = 6*34 contains reverse(6+34) = reverse(40) = 04 as a substring, so 204 is a term.


MATHEMATICA

q[n_] := AnyTrue[Divisors[n], SequenceCount[IntegerDigits[n], Reverse @ IntegerDigits[# + n/#]] > 0 &]; Select[Range[2000], q] (* Amiram Eldar, Jan 26 2021 *)


PROG

(PARI) isok(n) = {fordiv(n, d, if (#strsplit(Str(n), concat(Vecrev(Str(d+n/d)))) > 1, return(1)); if (d^2 > n, return(0)); ); }


CROSSREFS



KEYWORD

nonn,base


AUTHOR



STATUS

approved



