login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Unitary harmonic means H(n) of the unitary harmonic numbers (A006086).
(Formerly M0452)
8

%I M0452 #43 Mar 10 2023 09:09:55

%S 1,2,3,4,4,7,7,6,9,13,10,13,10,7,11,15,10,15,9,12,7,17,12,18,16,14,19,

%T 20,19,12,15,20,10,20,18,22,19,13,12,13,17,29,18,33,20,23,29,34,23,22,

%U 31,38,24,23,38,33,37,40,19,38,24,37,29,40,22,34,24,33

%N Unitary harmonic means H(n) of the unitary harmonic numbers (A006086).

%C Let d(n) and sigma(n) be number and sum of unitary divisors of n; then unitary harmonic mean of unitary divisors is H(n)=n*d(n)/sigma(n).

%C Each term appears a finite number of times in the sequence (Hagis and Lord, 1975). - _Amiram Eldar_, Mar 10 2023

%D N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

%H Donovan Johnson, <a href="/A006087/b006087.txt">Table of n, a(n) for n = 1..290</a>

%H Peter Hagis, Jr. and Graham Lord, <a href="https://doi.org/10.1090/S0002-9939-1975-0369231-9">Unitary harmonic numbers</a>, Proc. Amer. Math. Soc., 51 (1975), 1-7.

%H Peter Hagis, Jr. and Graham Lord, <a href="/A006086/a006086.pdf">Unitary harmonic numbers</a>, Proc. Amer. Math. Soc., 51 (1975), 1-7. (Annotated scanned copy)

%F a(n) = A103339(A006086(n)). - _Reinhard Zumkeller_, Mar 17 2012

%p A034444 := proc(n) 2^nops(ifactors(n)[2]) ; end: A034448 := proc(n) local ans,i,ifs ; ans :=1 ; ifs := ifactors(n)[2] ; for i from 1 to nops(ifs) do ans := ans*(1+ifs[i][1]^ifs[i][2]) ; od ; RETURN(ans) ; end: A006086 := proc(n) n*A034444(n)/A034448(n) ; end: for n from 1 to 5000000 do uhn := A006086(n) : if type(uhn,'integer') then printf("%d, ",uhn) ; fi ; od : # _R. J. Mathar_, Jun 06 2007

%t ud[n_] := 2^PrimeNu[n]; usigma[n_] := Sum[ If[ GCD[d, n/d] == 1, d, 0], {d, Divisors[n]}]; a[n_] := n*ud[n]/usigma[n]; a[1] = 1; Reap[ Do[ If[ IntegerQ[h = a[n]], Print[h]; Sow[h]], {n, 1, 10^7}]][[2, 1]] (* _Jean-François Alcover_, May 16 2013 *)

%t uh[n_] := n * Times @@ (2/(1 + Power @@@ FactorInteger[n])); uh[1] = 1; Select[Array[uh, 10^6], IntegerQ] (* _Amiram Eldar_, Mar 10 2023 *)

%o (PARI) {ud(n)=2^omega(n)} {sud(n) = sumdiv(n, d, if(gcd(d, n/d)==1, d))} {H(n)=n*ud(n)/sud(n)} for(n=1,10000000,if(((n*ud(n))%sud(n))==0,print1(H(n)","))) \\ Herman Jamke (hermanjamke(AT)fastmail.fm), Mar 02 2008

%o (PARI) uhmean(n) = {my(f = factor(n)); n*prod(i=1, #f~, 2/(1+f[i, 1]^f[i, 2])); };

%o lista(kmax) = {my(uh); for(k = 1, kmax, uh = uhmean(k); if(denominator(uh) == 1, print1(uh, ", ")));} \\ _Amiram Eldar_, Mar 10 2023

%o (Haskell)

%o import Data.Ratio ((%), numerator, denominator)

%o a006087 n = a006087_list !! (n-1)

%o a006087_list = map numerator $ filter ((== 1) . denominator) $

%o map uhm [1..] where uhm n = (n * a034444 n) % (a034448 n)

%o -- _Reinhard Zumkeller_, Mar 17 2012

%Y Cf. A006086, A034444, A034448, A077610.

%K nonn,nice

%O 1,2

%A _N. J. A. Sloane_

%E More terms from _R. J. Mathar_, Jun 06 2007

%E More terms from Herman Jamke (hermanjamke(AT)fastmail.fm), Mar 02 2008