login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A103339
Numerator of the unitary harmonic mean (i.e., the harmonic mean of the unitary divisors) of the positive integer n.
10
1, 4, 3, 8, 5, 2, 7, 16, 9, 20, 11, 12, 13, 7, 5, 32, 17, 12, 19, 8, 21, 22, 23, 8, 25, 52, 27, 14, 29, 10, 31, 64, 11, 68, 35, 72, 37, 38, 39, 80, 41, 7, 43, 44, 3, 23, 47, 48, 49, 100, 17, 104, 53, 18, 55, 28, 57, 116, 59, 4, 61, 31, 63, 128, 65, 11, 67, 136, 23, 35, 71, 16, 73
OFFSET
1,2
LINKS
FORMULA
a(A006086(n)) = A006087(n). - Reinhard Zumkeller, Mar 17 2012
From Amiram Eldar, Mar 10 2023: (Start)
a(n)/A103340(n) = n*A034444(n)/A034448(n).
a(n)/A103340(n) <= A099377(n)/A099378(n), with equality if and only if n is squarefree (A005117). (End)
EXAMPLE
1, 4/3, 3/2, 8/5, 5/3, 2, ...
a(8) = 16 because the unitary divisors of 8 are {1,8} and 2/(1/1 + 1/8) = 16/9.
MAPLE
with(numtheory): udivisors:=proc(n) local A, k: A:={}: for k from 1 to tau(n) do if gcd(divisors(n)[k], n/divisors(n)[k])=1 then A:=A union {divisors(n)[k]} else A:=A fi od end: utau:=n->nops(udivisors(n)): usigma:=n->sum(udivisors(n)[j], j=1..nops(udivisors(n))): uH:=n->n*utau(n)/usigma(n):seq(numer(uH(n)), n=1..81);
MATHEMATICA
ud[n_] := 2^PrimeNu[n]; usigma[n_] := DivisorSum[n, If[GCD[#, n/#] == 1, #, 0]&]; a[1] = 1; a[n_] := Numerator[n*ud[n]/usigma[n]]; Array[a, 100] (* Jean-François Alcover, Dec 03 2016 *)
a[n_] := Numerator[n * Times @@ (2 / (1 + Power @@@ FactorInteger[n]))]; a[1] = 1; Array[a, 100] (* Amiram Eldar, Mar 10 2023 *)
PROG
(Haskell)
import Data.Ratio ((%), numerator)
a103339 = numerator . uhm where uhm n = (n * a034444 n) % (a034448 n)
-- Reinhard Zumkeller, Mar 17 2012
(Python)
from sympy import gcd
from sympy.ntheory.factor_ import udivisor_sigma
def A103339(n): return (lambda x, y: y*n//gcd(x, y*n))(udivisor_sigma(n), udivisor_sigma(n, 0)) # Chai Wah Wu, Oct 20 2021
(PARI) a(n) = {my(f = factor(n)); numerator(n * prod(i=1, #f~, 2/(1 + f[i, 1]^f[i, 2]))); } \\ Amiram Eldar, Mar 10 2023
CROSSREFS
Cf. A103340 (denominators), A099377, A099378.
Sequence in context: A200345 A021962 A097672 * A361316 A361782 A353990
KEYWORD
frac,nonn
AUTHOR
Emeric Deutsch, Jan 31 2005
STATUS
approved