login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A103341 Numbers k such that floor(k*sqrt(2)) is a power of 2. 2
1, 2, 3, 6, 12, 23, 91, 2897, 5793, 23171, 46341, 92682, 185364, 370728, 1482911, 2965821, 5931642, 23726567, 47453133, 94906266, 379625063, 759250125, 1518500250, 3037000500, 6074001000, 12148002000, 24296004000, 48592008000 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,2

COMMENTS

Sequence is infinite.

If floor(sqrt(2)*2^k) + 1 < sqrt(2)*2^k + sqrt(2)/2, then floor(sqrt(2)*2^k) + 1 is in this sequence. - Jinyuan Wang, Nov 04 2018

REFERENCES

Jean-Marie De Koninck and Armel Mercier, 1001 problèmes en théorie classique des nombres, ellipses, 2004, pp. 117, 374-375.

LINKS

Robert Israel, Table of n, a(n) for n = 1..1000

MAPLE

N:= 100: # to get a(1)..a(N)

count:= 0:

for k from 0 while count < N do

  a:= ceil(2^(k-1)*sqrt(2));

  b:= floor((2^(k-1)+1/2)*sqrt(2));

  if a=b then

     count:= count+1;

     A[count]:= a;

  fi

od:

seq(A[n], n=1..N); # Robert Israel, Jul 19 2016

MATHEMATICA

f[k_] := Reduce[n > 0 && (2^k)^2<= 2*n^2 <  (2^k + 1)^2, n, Integers]; n /. ToRules /@ Select[Table[f[k], {k, 0, 40}], # =!= False & ] (* Jean-François Alcover, Sep 13 2011 *)

PROG

(PARI) for(k=0, 50, n=ceil(2^k/sqrt(2)); if(floor(n*sqrt(2))==2^k, print1(n, ", "))) \\ Robert Gerbicz, Jun 09 2007

(PARI) isok(n) = my(b=sqrtint(2*n^2)); (b==1) || (b==2) || (isprimepower(b, &p) && (p==2); \\ Michel Marcus, Mar 12 2019

(MAGMA) [n: n in [1..2*10^7] | 2^Ilog(2, s) eq s where s is Floor(n*Sqrt(2))]; // Vincenzo Librandi, Nov 06 2018

CROSSREFS

Cf. A001951 (floor(n*sqrt(2))).

Sequence in context: A326021 A164363 A306809 * A023675 A029996 A294123

Adjacent sequences:  A103338 A103339 A103340 * A103342 A103343 A103344

KEYWORD

nonn

AUTHOR

Benoit Cloitre, May 13 2007

EXTENSIONS

More terms from Robert Gerbicz, Jun 09 2007

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified March 31 02:36 EDT 2020. Contains 333135 sequences. (Running on oeis4.)