login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A141013
E.g.f. Sum_{d|M} (exp(d*x)-1)/d, M=14.
3
0, 4, 24, 250, 3096, 40834, 554664, 7647250, 106237176, 1481554114, 20701400904, 289537131250, 4051542498456, 56707753666594, 793811662272744, 11112685048647250, 155572843119354936
OFFSET
0,2
FORMULA
From R. J. Mathar, Mar 05 2010: (Start)
a(n) = sum_{d|14} d^(n-1) = 1+2^(n-1)+7^(n-1)+14^(n-1).
a(n)= 24*a(n-1) -163*a(n-2) +336*a(n-3) -196*a(n-4), n>4.
G.f: -2*x*(-2+36*x-163*x^2+168*x^3)/((x-1)*(14*x-1)*(2*x-1)*(7*x-1)).
(End)
a(n) = A000051(n-1)*A034491(n-1). - R. J. Mathar, May 26 2016
MAPLE
A141013 := proc(n) local d; add(d^(n-1), d=numtheory[divisors](14)) ; end proc: seq(A141013(n), n=1..20) ; # R. J. Mathar, Mar 05 2010
MATHEMATICA
CoefficientList[Series[- 2 x (-2 + 36 x - 163 x^2 + 168 x^3)/((x-1) (14*x-1) (2*x-1) (7*x-1)), {x, 0, 40}], x] (* Vincenzo Librandi, Dec 12 2012 *)
PROG
(Magma) [0] cat [1+2^(n-1)+7^(n-1)+14^(n-1): n in [1..20]]; // Vincenzo Librandi, Dec 12 2012
CROSSREFS
Cf. A141012 (M=13), A141014 (M=15).
Sequence in context: A126391 A006088 A325963 * A330469 A227467 A176785
KEYWORD
nonn,easy
AUTHOR
R. J. Mathar, Jul 11 2008
STATUS
approved