login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A038046
Shifts left under transform T where Ta is (identity) DCONV a.
11
1, 1, 3, 6, 12, 17, 32, 39, 63, 81, 120, 131, 213, 226, 311, 377, 503, 520, 742, 761, 1031, 1169, 1442, 1465, 2008, 2093, 2558, 2801, 3465, 3494, 4591, 4622, 5628, 6054, 7111, 7390, 9321, 9358, 10899, 11616, 13873, 13914, 17070, 17113, 20063, 21509, 24462
OFFSET
1,3
COMMENTS
Eigensequence of triangle A126988. (i.e. the sequence shifts upon multiplication from the left by triangle A126988). - Gary W. Adamson, Apr 27 2009
Number of planted achiral trees with a distinguished leaf. - Gus Wiseman, Jul 31 2018
LINKS
FORMULA
a(1) = 1; a(n > 1) = Sum_{d|(n-1)} d * a((n-1)/d). - Gus Wiseman, Jul 31 2018
G.f. A(x) satisfies: A(x) = x * (1 + Sum_{j>=1} j*A(x^j)). - Ilya Gutkovskiy, May 09 2019
EXAMPLE
From Gus Wiseman, Jul 31 2018: (Start)
The a(5) = 12 planted achiral trees with a distinguished leaf:
(Oooo), (oOoo), (ooOo), (oooO),
((O)(o)), ((o)(O)),
((Ooo)), ((oOo)), ((ooO)),
(((Oo))), (((oO))),
((((O)))).
(End)
MAPLE
a:= proc(n) option remember; `if`(n<2, n, (m-> m*
add(a(d)/d, d=numtheory[divisors](m)))(n-1))
end:
seq(a(n), n=1..50); # Alois P. Heinz, May 09 2019
MATHEMATICA
a[n_]:=If[n==1, 1, Sum[d*a[(n-1)/d], {d, Divisors[n-1]}]];
Array[a, 30] (* Gus Wiseman, Jul 31 2018 *)
CROSSREFS
KEYWORD
nonn,eigen
STATUS
approved