login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A007554
Unique attractor for (RIGHT then MOBIUS) transform.
(Formerly M0434)
12
1, 1, 0, -1, -2, -3, -3, -4, -3, -3, -1, -2, 3, 2, 5, 8, 12, 11, 17, 16, 21, 25, 26, 25, 30, 32, 29, 32, 32, 31, 30, 29, 21, 23, 11, 17, 5, 4, -13, -15, -28, -29, -52, -53, -76, -78, -104, -105, -142, -139, -168, -179, -209, -210, -253, -249, -278, -294
OFFSET
1,5
REFERENCES
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
LINKS
Franklin T. Adams-Watters, Table of n, a(n) for n = 1..5000
M. Bernstein and N. J. A. Sloane, Some canonical sequences of integers, Linear Alg. Applications, 226-228 (1995), 57-72; erratum 320 (2000), 210. [Link to arXiv version]
M. Bernstein and N. J. A. Sloane, Some canonical sequences of integers, Linear Alg. Applications, 226-228 (1995), 57-72; erratum 320 (2000), 210. [Link to Lin. Alg. Applic. version together with omitted figures]
N. J. A. Sloane, Transforms
FORMULA
a(n+1) = Sum_{d|n} mu(n/d) * a(d).
G.f. A(x) satisfies: A(x) = x + x * Sum_{k>=1} mu(k) * A(x^k). - Ilya Gutkovskiy, Jul 01 2021
MATHEMATICA
a[n_] := a[n] = Sum[ MoebiusMu[ (n - 1)/d]*a[d], {d, Divisors[n - 1]}]; a[1] = 1; Table[a[n], {n, 1, 58}] (* Jean-François Alcover, Jan 04 2012, from formula *)
PROG
(Haskell)
import Data.List (genericIndex)
a007554 n = genericIndex a007554_list (n-1)
a007554_list = 1 : f 1 where
f x = (sum $ zipWith (*) (map a008683 divs)
(map a007554 $ reverse divs)) : f (x + 1)
where divs = a027750_row x
-- Reinhard Zumkeller, Mar 16 2013
CROSSREFS
Cf. A003238.
Cf. A054525.
Sequence in context: A278116 A352420 A215469 * A139069 A071866 A077603
KEYWORD
sign,nice,eigen,look
STATUS
approved