login
A007557
Shifts left when inverse Moebius transform applied twice.
(Formerly M2458)
9
1, 1, 3, 5, 10, 12, 24, 26, 43, 52, 78, 80, 133, 135, 189, 219, 295, 297, 428, 430, 584, 642, 804, 806, 1100, 1123, 1395, 1494, 1856, 1858, 2428, 2430, 2977, 3143, 3739, 3811, 4790, 4792, 5654, 5930, 7072, 7074, 8656
OFFSET
1,3
COMMENTS
Equals eigensequence of triangle A127170 (the square of the inverse Mobius transform). - Gary W. Adamson, Apr 27 2009
REFERENCES
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
LINKS
M. Bernstein and N. J. A. Sloane, Some canonical sequences of integers, arXiv:math/0205301 [math.CO], 2002; Linear Alg. Applications, 226-228 (1995), 57-72; erratum 320 (2000), 210. [Link to arXiv version]
M. Bernstein and N. J. A. Sloane, Some canonical sequences of integers, Linear Alg. Applications, 226-228 (1995), 57-72; erratum 320 (2000), 210. [Link to Lin. Alg. Applic. version together with omitted figures]
N. J. A. Sloane, Transforms
FORMULA
a(n+1) = Sum_{d divides n} tau(n/d)*a(d). - Vladeta Jovovic, Jan 24 2003
From Ilya Gutkovskiy, Apr 30 2019: (Start)
G.f. A(x) satisfies: A(x) = x * (1 + Sum_{i>=1} Sum_{j>=1} A(x^(i*j))).
G.f.: A(x) = Sum_{n>=1} a(n)*x^n = x * (1 + Sum_{i>=1} Sum_{j>=1} a(i)*x^(i*j)/(1 - x^(i*j))). (End)
MATHEMATICA
a[n_] := a[n] = Sum[ DivisorSigma[0, (n - 1)/d]*a[d], {d, Divisors[n - 1]}]; a[1] = 1; Table[a[n], {n, 1, 43}] (* Jean-François Alcover, Dec 12 2011, after Vladeta Jovovic *)
CROSSREFS
KEYWORD
nonn,nice,eigen
EXTENSIONS
More terms from Vladeta Jovovic, Jan 24 2003
STATUS
approved