login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Decimal expansion of J_4 = Integral_{0..Pi/2} x^4/sin(x) dx.
2

%I #14 Feb 28 2023 23:48:59

%S 2,0,5,3,1,6,0,7,3,1,4,8,0,5,9,1,6,6,8,9,5,6,5,4,1,2,9,6,0,2,6,5,1,1,

%T 3,6,6,8,5,6,5,5,8,8,4,4,5,7,2,3,9,5,6,9,4,3,8,5,1,8,8,9,2,7,6,5,2,2,

%U 9,2,3,4,2,3,7,9,1,9,1,7,7,1,7,6,7,7,6,9,8,0,7,8,9,0,1,7,4,2,6,7,3,2

%N Decimal expansion of J_4 = Integral_{0..Pi/2} x^4/sin(x) dx.

%H G. C. Greubel, <a href="/A261068/b261068.txt">Table of n, a(n) for n = 1..1000</a>

%H J. M. Borwein, I. J. Zucker and J. Boersma, <a href="http://carma.newcastle.edu.au/MZVs/mzv-week05.pdf">The evaluation of character Euler double sums</a>, The Ramanujan Journal, April 2008, Volume 15, Issue 3, pp 377-405, see p. 13.

%F J_4 = Catalan*Pi^3 - 7*i*Pi^5/480 - 24*i*Pi*PolyLog(4, -i) + (93*zeta(5))/2.

%F Also equals Catalan*Pi^3 + (1/64)*(Pi*(PolyGamma(3, 3/4) - PolyGamma(3, 1/4)) + 2976*Zeta(5));

%e 2.05316073148059166895654129602651136685655884457239569438518892765...

%t J4 = Catalan*Pi^3 - 7*I*Pi^5/480 - 24*I*Pi*PolyLog[4, -I] + 93*Zeta[5]/2; RealDigits[J4 // Re, 10, 102] // First

%Y Cf. A006752 (J_1 / 2 = Catalan's constant), A245073 (J_2), A225125 (J_3), A261069 (J_5).

%K cons,nonn

%O 1,1

%A _Jean-François Alcover_, Aug 08 2015