login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A326724
Triangle with Euler (secant) numbers, read by rows, T(n, k) for 0 <= k <= n.
1
1, -1, 1, 5, -10, 5, -61, 183, -183, 61, 1385, -5540, 8310, -5540, 1385, -50521, 252605, -505210, 505210, -252605, 50521, 2702765, -16216590, 40541475, -54055300, 40541475, -16216590, 2702765, -199360981, 1395526867, -4186580601, 6977634335, -6977634335, 4186580601, -1395526867, 199360981
OFFSET
0,4
FORMULA
T(n, k) = (2*n)! [x^k] [y^(2*n)] sec(y*sqrt(x - 1)).
Sum_{k=0..n} (-1)^(n-k)*T(n, k) = |A012816(n+1)|.
EXAMPLE
Triangle starts:
[0] 1;
[1] -1, 1;
[2] 5, -10, 5;
[3] -61, 183, -183, 61;
[4] 1385, -5540, 8310, -5540, 1385;
[5] -50521, 252605, -505210, 505210, -252605, 50521;
[6] 2702765, -16216590, 40541475, -54055300, 40541475, -16216590, 2702765;
MATHEMATICA
gf := Sec[y Sqrt[x - 1]]; ser := Series[gf, {y, 0, 26}];
cy[n_] := n! Coefficient[ser, y, n]; row[n_] := CoefficientList[cy[2 n], x];
Table[row[n], {n, 0, 7}] // Flatten
CROSSREFS
KEYWORD
sign,tabl
AUTHOR
Peter Luschny, Aug 06 2019
STATUS
approved