login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A012816
E.g.f. arctan(sec(x)*sinh(x)) (odd powers only).
7
1, 2, -20, -488, 22160, 1616672, -172976960, -25518205568, 4964227109120, 1231298393825792, -379260096755225600, -142026494757146421248, 63547531933929827962880, 33481297996129270926221312, -20517021964757071715832381440, -14468510293983989090015078678528
OFFSET
0,2
COMMENTS
The unsigned sequence {|a(n)|}n>=1 = [2,20,488,22160,...] enumerates binary increasing trees on 2*n vertices with a perfect matching (Kuba and Wagner).
LINKS
M. Kuba and S. Wagner, Perfect matchings and k-indecomposabilty of increasing trees, Seminaire Lotharingien de Combinatoire 57 (2007), Article B57a.
FORMULA
1/cosh(x*sqrt(2)) = 1 - 2x^2/2! + 20*x^4/4! - 488*x^6/6! +-...
a(n) = (-1)^[n/2]*2^n*A000364(n). - Philippe Deléham, Jun 16 2007
G.f. (for the unsigned sequence): 1/G(0) where G(k) = 1 - 2*x*(k+1)^2/G(k+1); (continued fraction). - Sergei N. Gladkovskii, Jan 12 2013
G.f. (for the unsigned sequence): Q(0), where Q(k) = 1 - 2*x*(k+1)^2/(2*x*(k+1)^2 - 1/Q(k+1) ); (continued fraction). - Sergei N. Gladkovskii, Oct 10 2013
E.g.f.(for the unsigned sequence, odd powers only): 1 + T(0)*x^2 /(1-x^2), where T(k) = 1 - 2*x^2*(2*k+1)*(2*k+2)/( 2*x^2*(2*k+1)*(2*k+2) + ((2*k+1)*(2*k+2)-2*x^2)*((2*k+3)*(2*k+4)-2*x^2)/T(k+1) ); (continued fraction). - Sergei N. Gladkovskii, Oct 14 2013
EXAMPLE
arctan(sec(x)*sinh(x)) = x+2/3!*x^3-20/5!*x^5-488/7!*x^7+22160/9!*x^9...
MAPLE
a:= n-> (2*n+1)! *
coeff(series(arctan(sec(x)*sinh(x)), x, 2*(n+1)), x, 2*n+1):
seq(a(n), n=0..20);
MATHEMATICA
With[{nn=40}, Take[CoefficientList[Series[ArcTan[Sec[x]Sinh[x]], {x, 0, nn}], x] Range[0, nn-1]!, {2, -1, 2}]] (* Harvey P. Dale, Jul 25 2024 *)
CROSSREFS
Bisection (odd part) of A009342.
Sequence in context: A292396 A274738 A352250 * A012340 A279839 A279837
KEYWORD
sign
AUTHOR
Patrick Demichel (patrick.demichel(AT)hp.com)
STATUS
approved