login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A274738
E.g.f. satisfies: A(x) = exp( x * Integral A(x) dx ).
2
1, 2, 20, 480, 21200, 1495040, 154090560, 21851648000, 4080788691200, 970763776819200, 286589492301132800, 102814798964090470400, 44054406432402362880000, 22221550008574568038400000, 13033785372897433673984000000, 8796017673121387398310133760000, 6767531687276918248610686607360000, 5888477519317946191613742861516800000, 5753199370152454677482310592627507200000, 6271818135933778813784553455691078041600000
OFFSET
0,2
COMMENTS
Since the e.g.f. is an even function, this sequence consists of the coefficients of only the even powers of x.
LINKS
FORMULA
E.g.f. A(x) equals the logarithmic derivative of the e.g.f. of A274739.
a(n) ~ c * n!^2 * d^n / sqrt(n), where d = 3.0991310195... and c = 0.8742487... . - Vaclav Kotesovec, Jul 06 2016
EXAMPLE
E.g.f.: A(x) = 1 + 2*x^2/2! + 20*x^4/4! + 480*x^6/6! + 21200*x^8/8! + 1495040*x^10/10! + 154090560*x^12/12! + 21851648000*x^14/14! + 4080788691200*x^16/16! +...
where A(x) = exp( x * Integral A(x) dx ).
PROG
(PARI) {a(n) = my(A=1); for(i=0, n, A = exp( x*intformal( A +x*O(x^(2*n)) ) ) ); (2*n)!*polcoeff(A, 2*n)}
for(n=0, 20, print1(a(n), ", "))
CROSSREFS
Cf. A274739.
Sequence in context: A210901 A274572 A292396 * A352250 A012816 A012340
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Jul 05 2016
STATUS
approved