login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A274736
G.f. A(x) satisfies: A(x)^2 - 4*A(x)^3 = A(x^2).
2
1, 2, 11, 68, 497, 3862, 31691, 269064, 2346455, 20883170, 188928097, 1732200684, 16059878311, 150308726166, 1418213573009, 13475591449360, 128831965006038, 1238387413610926, 11961509281268996, 116035914722431492, 1130027817795205818, 11043733824515222466, 108276550546410148128, 1064692398520050464088, 10497351182518154842770, 103754825395109251885646, 1027845237135955778148684
OFFSET
1,2
LINKS
FORMULA
G.f. A(x) satisfies: A(B(x)^2) = x^2 - 4*x^3, where A(B(x)) = x.
EXAMPLE
G.f.: A(x) = x + 2*x^2 + 11*x^3 + 68*x^4 + 497*x^5 + 3862*x^6 + 31691*x^7 + 269064*x^8 + 2346455*x^9 + 20883170*x^10 +...
such that A(x)^2 - 4*A(x)^3 = A(x^2).
RELATED SERIES.
A(x)^2 = x^2 + 4*x^3 + 26*x^4 + 180*x^5 + 1387*x^6 + 11208*x^7 + 94388*x^8 + 817448*x^9 + 7238609*x^10 + 65220372*x^11 + 596019486*x^12 +...
A(x)^3 = x^3 + 6*x^4 + 45*x^5 + 344*x^6 + 2802*x^7 + 23580*x^8 + 204362*x^9 + 1809528*x^10 + 16305093*x^11 + 149003906*x^12 +...
The square root of A(x^2) is an integer series:
sqrt(A(x^2)) = A(x)*sqrt(1 - 4*A(x)) = x + x^3 + 5*x^5 + 29*x^7 + 207*x^9 + 1579*x^11 + 12811*x^13 + 107823*x^15 + 934134*x^17 + 8269964*x^19 +...
Let B(x) denote the series reversion of g.f. A(x), so that A(B(x)) = x, where
B(x) = x - 2*x^2 - 3*x^3 + 2*x^4 - 18*x^5 - 12*x^6 - 151*x^7 - 222*x^8 - 948*x^9 - 2552*x^10 - 11484*x^11 - 28632*x^12 - 130776*x^13 - 396304*x^14 +...
Note that g.f. A(x) and B(x) satisfy:
(1) A(B(x)^2) = C(x) = x^2 - 4*x^3.
(2) A(B(x)^4) = C(C(x)) = x^4 - 8*x^5 + 12*x^6 + 48*x^7 - 192*x^8 + 256*x^9.
(3) A(B(x)^8) = C(C(C(x))).
PROG
(PARI) /* From A(B(x)^2) = x^2 - 4*x^3, where A(B(x)) = x: */
{a(n) = my(A=[1, 2], F, B); for(i=1, n, A=concat(A, 0); F=x*Ser(A); B=serreverse(F); A[#A] = Vec(subst(F, x, B^2))[#A]/2); A[n]}
for(n=1, 30, print1(a(n), ", "))
CROSSREFS
Sequence in context: A153298 A153393 A365135 * A361410 A229230 A135166
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Jul 19 2016
STATUS
approved