login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A274735
G.f. satisfies A(x) = (1 + x*A(x))^3 * (1 + x*A(x)^2).
6
1, 4, 26, 210, 1901, 18445, 187524, 1971672, 21263360, 233907762, 2614446624, 29607343948, 338977591904, 3917185497535, 45629006313280, 535199773167207, 6315789123860388, 74932400322972992, 893276792585933870, 10694510040508714014, 128531711285410216883, 1550159476645634696615, 18755239991772817629972, 227577929298568261967650, 2768820313297861609739979
OFFSET
0,2
COMMENTS
More generally, if G(x) satisfies
G(x) = (1 + a*x*G(x))^m * (1 + b*x*G(x)^2), then
G(x) = (1/x) * Series_Reversion( x * (1 - b*x*(1 + a*x)^m) / (1 + a*x)^m ).
LINKS
FORMULA
G.f.: (1/x) * Series_Reversion( x * (1 - x*(1+x)^3) / (1+x)^3 ).
a(n) = (1/(n+1)) * Sum_{k=0..n} binomial(n+k,k) * binomial(3*n+3*k+3,n-k). - Seiichi Manyama, Jan 27 2024
EXAMPLE
G.f.: A(x) = 1 + 4*x + 26*x^2 + 210*x^3 + 1901*x^4 + 18445*x^5 + 187524*x^6 + 1971672*x^7 + 21263360*x^8 +...
PROG
(PARI) {a(n) = my(A=1); for(i=1, n, A = (1 + x*A)^3 * (1 + x*A^2) + x*O(x^n) ); polcoeff(A, n)}
for(n=0, 30, print1(a(n), ", "))
(PARI) {a(n) = my(A=1); A = (1/x)*serreverse(x*(1-x*(1+x)^3)/(1+x +x^2*O(x^n) )^3 ); polcoeff(A, n)}
for(n=0, 30, print1(a(n), ", "))
CROSSREFS
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Aug 02 2016
STATUS
approved