The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 56th year, we are closing in on 350,000 sequences, and we’ve crossed 9,700 citations (which often say “discovered thanks to the OEIS”).

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A274737 G.f. A(x) satisfies: A(x)^2 - 6*A(x)^3 = A(x^2). 2
 1, 3, 24, 225, 2451, 28584, 350811, 4456971, 58132194, 773773785, 10468458657, 143528736888, 1989864432072, 27848242441521, 392899157668962, 5582238744258009, 79799757710924847, 1146961633262521734, 16564959319032187542, 240274065224349972819, 3498743054027725572015, 51126484223473738706979, 749497753666229701655097, 11019579243648283996016040, 162451851753106862734656771, 2400803315482934131290808344 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,2 LINKS Paul D. Hanna, Table of n, a(n) for n = 1..300 FORMULA G.f. A(x) satisfies: A(B(x)^2) = x^2 - 6*x^3, where A(B(x)) = x. EXAMPLE G.f.: A(x) = x + 3*x^2 + 24*x^3 + 225*x^4 + 2451*x^5 + 28584*x^6 + 350811*x^7 + 4456971*x^8 + 58132194*x^9 + 773773785*x^10 +... such that A(x)^2 - 6*A(x)^3 = A(x^2). RELATED SERIES. A(x)^2 = x^2 + 6*x^3 + 57*x^4 + 594*x^5 + 6828*x^6 + 82674*x^7 + 1041399*x^8 + 13493790*x^9 + 178715343*x^10 + 2408259060*x^11 + 32912262864*x^12 +... A(x)^3 = x^3 + 9*x^4 + 99*x^5 + 1134*x^6 + 13779*x^7 + 173529*x^8 + 2248965*x^9 + 29785482*x^10 + 401376510*x^11 + 5485372380*x^12 +... Let B(x) denote the series reversion of g.f. A(x), so that A(B(x)) = x, where B(x) = x - 3*x^2 - 6*x^3 - 75*x^5 - 171*x^6 - 1287*x^7 - 4239*x^8 - 23289*x^9 - 107001*x^10 - 585468*x^11 - 2852334*x^12 - 15659352*x^13 - 80867160*x^14 +... Note that g.f. A(x) and B(x) satisfy: (1) A(B(x)^2) = C(x) = x^2 - 6*x^3. (2) A(B(x)^4) = C(C(x)) = x^4 - 12*x^5 + 30*x^6 + 108*x^7 - 648*x^8 + 1296*x^9. (3) A(B(x)^8) = C(C(C(x))). PROG (PARI) /* From A(B(x)^2) = x^2 - 6*x^3, where A(B(x)) = x: */ {a(n) = my(A=[1, 3], F, B); for(i=1, n, A=concat(A, 0); F=x*Ser(A); B=serreverse(F); A[#A] = Vec(subst(F, x, B^2))[#A]/2); A[n]} for(n=1, 30, print1(a(n), ", ")) CROSSREFS Cf. A273095, A274736. Sequence in context: A000279 A292311 A279973 * A324446 A307514 A225107 Adjacent sequences:  A274734 A274735 A274736 * A274738 A274739 A274740 KEYWORD nonn AUTHOR Paul D. Hanna, Jul 19 2016 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified December 5 22:34 EST 2021. Contains 349558 sequences. (Running on oeis4.)