login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A273095
G.f. A(x) satisfies: A(x)^2 - 2*A(x)^3 = A(x^2).
6
1, 1, 3, 9, 34, 131, 544, 2321, 10219, 45858, 209422, 969115, 4536240, 21435168, 102120900, 489966937, 2365411849, 11481936107, 56005441585, 274365808690, 1349355995822, 6659759051278, 32975144338094, 163753271207603, 815384381782875, 4070152108372400, 20363490114853946, 102097178305283104, 512896449689275282, 2581316849641991364, 13013547947445475296, 65712064033864711137, 332312118095745844303, 1682904769274022037513
OFFSET
1,3
LINKS
FORMULA
G.f. A(x) satisfies: A(B(x)^2) = x^2 - 2*x^3, where A(B(x)) = x.
a(n) ~ c * d^n / n^(3/2), where d = 5.29878119718866901105709936425... and c = 0.0784096654417593202431027... - Vaclav Kotesovec, Sep 02 2017
EXAMPLE
G.f.: A(x) = x + x^2 + 3*x^3 + 9*x^4 + 34*x^5 + 131*x^6 + 544*x^7 + 2321*x^8 + 10219*x^9 + 45858*x^10 + 209422*x^11 + 969115*x^12 + 4536240*x^13 +...
where A(x)^2 - 2*A(x)^3 = A(x^2).
RELATED SERIES.
A(x)^2 = x^2 + 2*x^3 + 7*x^4 + 24*x^5 + 95*x^6 + 384*x^7 + 1635*x^8 + 7128*x^9 + 31858*x^10 + 144780*x^11 + 667805*x^12 + 3116520*x^13 + 14691616*x^14 +...
A(x)^3 = x^3 + 3*x^4 + 12*x^5 + 46*x^6 + 192*x^7 + 813*x^8 + 3564*x^9 + 15912*x^10 + 72390*x^11 + 333837*x^12 + 1558260*x^13 + 7345536*x^14 + 34924036*x^15 +...
where
A(x)^2 - 2*A(x)^3 = x^2 + x^4 + 3*x^6 + 9*x^8 + 34*x^10 + 131*x^12 + 544*x^14 +...
Let B(x) be the series reversion of g.f. A(x), so that A(B(x)) = x, then
B(x) = x - x^2 - x^3 + x^4 - 2*x^5 + 2*x^6 - 6*x^7 - 2*x^8 - x^9 + x^10 - 43*x^11 + 35*x^12 - 48*x^13 - 64*x^14 - 256*x^15 + 552*x^16 - 1791*x^17 + 1583*x^18 - 3941*x^19 + 3149*x^20 - 12464*x^21 + 8696*x^22 - 36452*x^23 + 30772*x^24 +...
where B(x^2 - 2*x^3) = B(x)^2.
Further, we have
A(B(x)^2) = C(x) = x^2 - 2*x^3,
A(B(x)^4) = C(C(x)) = x^4 - 4*x^5 + 2*x^6 + 12*x^7 - 24*x^8 + 16*x^9,
A(B(x)^8) = C(C(C(x))) = x^8 - 8*x^9 + 20*x^10 + 8*x^11 - 142*x^12 + 296*x^13 - 188*x^14 - 360*x^15 + 1464*x^16 - 3360*x^17 + 4176*x^18 + 2400*x^19 - 19200*x^20 + 30720*x^21 - 10752*x^22 - 39936*x^23 + 79872*x^24 - 73728*x^25 + 36864*x^26 - 8192*x^27, ...
so that A(B(x)^(2^n)) = C^n(x), the n-th iteration of C(x) = x^2 - 2*x^3.
PROG
(PARI) /* From A(B(x)^2) = x^2 - 2*x^3, where A(B(x)) = x: */
{a(n) = my(A=[1, 1], F, B); for(i=1, n, A=concat(A, 0); F=x*Ser(A); B=serreverse(F); A[#A] = Vec(subst(F, x, B^2))[#A]/2); A[n]}
for(n=1, 40, print1(a(n), ", "))
CROSSREFS
Sequence in context: A149011 A149012 A145090 * A137953 A353944 A245893
KEYWORD
nonn
AUTHOR
Paul D. Hanna, May 15 2016
STATUS
approved