login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A365135
G.f. satisfies A(x) = (1 + x*A(x)/(1 - x*A(x))^3)^2.
1
1, 2, 11, 68, 467, 3418, 26133, 206264, 1667908, 13746476, 115050074, 975180582, 8354044986, 72215867960, 629139381448, 5518236646614, 48689379017014, 431868759238498, 3848616161600778, 34441553184113542, 309390614528633311, 2788841905397090626
OFFSET
0,2
FORMULA
If g.f. satisfies A(x) = (1 + x*A(x)/(1 - x*A(x))^s)^t, then a(n) = (1/(n+1)) * Sum_{k=0..n} binomial(t*(n+1),k) * binomial(n+(s-1)*k-1,n-k).
PROG
(PARI) a(n, s=3, t=2) = sum(k=0, n, binomial(t*(n+1), k)*binomial(n+(s-1)*k-1, n-k))/(n+1);
CROSSREFS
Cf. A006013.
Sequence in context: A042245 A153298 A153393 * A274736 A361410 A229230
KEYWORD
nonn
AUTHOR
Seiichi Manyama, Aug 23 2023
STATUS
approved