login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A365138
Genus of the quotient of the modular curve X_1(n) by the Fricke involution.
1
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 2, 1, 3, 1, 2, 3, 5, 2, 6, 4, 6, 5, 10, 4, 12, 8, 10, 10, 11, 8, 20, 13, 15, 12, 24, 12, 28, 17, 20, 22, 33, 18, 34, 23, 31, 27, 45, 25, 39, 29, 42, 39, 56, 28, 62, 44, 47, 46, 59, 39, 77, 51, 65, 48, 85, 48, 93, 66, 71, 67, 89, 60, 109
OFFSET
1,17
LINKS
C. H. Kim and J. K. Koo, Estimation of Genus for Certain Arithmetic Groups, Communications in Algebra, 32:7 (2004), 2479-2495.
FORMULA
a(n) = (A029937(n) - A001617(n))/2 + A276183(n).
MATHEMATICA
A000003[n_] :=
Length[Select[
Flatten[#, 1] &@
Table[{i, j, (j^2 + 4 n)/(4 i)}, {i, Sqrt[4 n/3]}, {j, 1 - i, i}],
Mod[#3, 1] == 0 && #3 >= # &&
GCD[##] == 1 && ! (# == #3 && #2 < 0) & @@ # &]];
A001617[n_] :=
If[n < 1, 0,
1 + Sum[MoebiusMu[d]^2 n/d/12 - EulerPhi[GCD[d, n/d]]/2, {d,
Divisors@n}] -
Count[(#^2 - # + 1)/n & /@ Range[n], _?IntegerQ]/3 -
Count[(#^2 + 1)/n & /@ Range[n], _?IntegerQ]/4];
A029937[n_] =
If[n < 5, 0,
1 + Sum[d^2*MoebiusMu[n/d]/24 - EulerPhi[d]*EulerPhi[n/d]/4, {d,
Divisors[n]}]];
A276183[n_] :=
If[0 <= n <= 4,
0, (A001617[n] + 1)/2 -
If[Mod[n, 8] == 3, 4, If[Mod[n, 8] == 7, 6, 3]]*A000003[n]/12];
A365138[n_] := (A029937[n] - A001617[n])/2 + A276183[n]
CROSSREFS
KEYWORD
nonn
AUTHOR
David Jao, Aug 23 2023
STATUS
approved