login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A365137
a(n) is the number of n-digit numbers that contain '22' in their decimal representation.
1
0, 0, 1, 18, 261, 3411, 42048, 499131, 5770611, 65427678, 730784601, 8065910511, 88170256008, 956125498671, 10298661792111, 110293085617038, 1175325726682341, 12470569310694411, 131813055336390768, 1388552621823766611, 14583291094441416411, 152746593446386647198
OFFSET
0,4
COMMENTS
a(n) is also valid for '11', '33', '44', '55', '66', '77', '88' or '99' instead of '22'.
FORMULA
a(n) = 19*a(n - 1) - 81*a(n - 2) - 90*a(n - 3) with a(0) = a(1) = 0, a(2) = 1 and a(3) = 18 for n >= 4.
a(n) = 9*10^(n - 1) - A057092(n) + A057092(n - 2) with a(0) = a(1) = 0 for n >= 2.
a(0) = 0, a(n) = 9*10^(n - 1) - (p^(n + 1) - q^(n + 1))/(3*sqrt(13)) + (p^(n - 1) - q^(n - 1))/(3*sqrt(13)) with p = (9 + 3*sqrt(13))/2 and q = (9 - 3*sqrt(13))/2 for n >= 1.
G.f.: x^2*(1 - x)/((1 - 10*x)*(1 - 9*x - 9*x^2)).
a(n) = A255372(n) for n <= 5.
EXAMPLE
a(2) = 1, the number 22 itself.
a(3) = 18, 10 numbers 22X plus 9 numbers X22 minus 1 number 222.
a(4) = 261, 100 numbers 22XX plus 90 numbers X22X plus 90 numbers XX22 minus 10 numbers 222X minus 9 numbers X222.
MAPLE
A365137 := proc(n) option remember; if n <= 1 then 0; elif n = 2 then 1; elif n = 3 then 18; else 19*procname(n - 1) - 81*procname(n - 2) - 90*procname(n - 3); end if; end proc; seq(A365137(n), n = 0 .. 21);
MATHEMATICA
LinearRecurrence[{19, -81, -90}, {0, 0, 1, 18}, 22] (* Robert P. P. McKone, Aug 24 2023 *)
CROSSREFS
Sequence in context: A374880 A374862 A362808 * A255372 A255373 A255374
KEYWORD
nonn,base,easy
AUTHOR
Felix Huber, Aug 23 2023
STATUS
approved