login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A326725
a(n) = (1/2)*n*(5*n - 7); row 5 of A326728.
3
0, -1, 3, 12, 26, 45, 69, 98, 132, 171, 215, 264, 318, 377, 441, 510, 584, 663, 747, 836, 930, 1029, 1133, 1242, 1356, 1475, 1599, 1728, 1862, 2001, 2145, 2294, 2448, 2607, 2771, 2940, 3114, 3293, 3477, 3666, 3860, 4059, 4263, 4472, 4686, 4905, 5129, 5358, 5592
OFFSET
0,3
FORMULA
From Colin Barker, Aug 04 2019: (Start)
G.f.: -x*(1 - 6*x)/(1 - x)^3.
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3) for n > 2. (End)
E.g.f.: exp(x)*x*(5*x - 2)/2. - Elmo R. Oliveira, Dec 24 2024
MAPLE
a := n -> (1/2)*n*(5*n - 7): seq(a(n), n=0..48);
PROG
(PARI) concat(0, Vec(-x*(1 - 6*x) / (1 - x)^3 + O(x^40))) \\ Colin Barker, Aug 04 2019
CROSSREFS
Cf. A326728.
Sequence in context: A366984 A237650 A199242 * A169678 A294366 A110859
KEYWORD
sign,easy,changed
AUTHOR
Peter Luschny, Aug 04 2019
STATUS
approved