login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A326722
T(n, k) = n! * [x^k] [y^n] sec(z)(x + z*sin(z)/y) where z = y*sqrt(x^2 - 1) for 0 <= k <= n+1 and T(-1, 0) = 1, triangle read by rows.
7
1, 0, 1, -1, 0, 1, 0, -1, 0, 1, 2, 0, -4, 0, 2, 0, 5, 0, -10, 0, 5, -16, 0, 48, 0, -48, 0, 16, 0, -61, 0, 183, 0, -183, 0, 61, 272, 0, -1088, 0, 1632, 0, -1088, 0, 272, 0, 1385, 0, -5540, 0, 8310, 0, -5540, 0, 1385, -7936, 0, 39680, 0, -79360, 0, 79360, 0, -39680, 0, 7936
OFFSET
-1,11
FORMULA
T(n, k) = A178111(n, k)*A000111(n-1) if n > 1 else k^n, assuming 0 based triangle.
Exponential generating functions for the columns (n >= 0) are:
egf_col0(x) = -tanh(x).
egf_col1(x) = sech(x).
egf_col2(x) = (tanh(x) + x*sech(x)^2)/2.
egf_col3(x) = x*tanh(x)*sech(x)/2.
egf_col4(x) = (tanh(x) + x*(2*x*tanh(x) - 1)*sech(x)^2)/8.
egf_col5(x) = x*sech(x)*(x + tanh(x) - 2*x*sech(x)^2)/8.
egf_col6(x) = (3*tanh(x) + x*sech(x)^2*(4*x^2 - 6*x^2*sech(x)^2 - 3))/48.
A recurrence of the row polynomials based on offset 0 is given by the recurrence of the Euler-Bernoulli-Entringer numbers A008281 combined with Paul Barry's A178111. See the Maple script.
EXAMPLE
[-1] 1;
[ 0] 0, 1;
[ 1] -1, 0, 1;
[ 2] 0, -1, 0, 1;
[ 3] 2, 0, -4, 0, 2;
[ 4] 0, 5, 0, -10, 0, 5;
[ 5] -16, 0, 48, 0, -48, 0, 16;
[ 6] 0, -61, 0, 183, 0, -183, 0, 61;
[ 7] 272, 0, -1088, 0, 1632, 0, -1088, 0, 272;
[ 8] 0, 1385, 0, -5540, 0, 8310, 0, -5540, 0, 1385;
[ 9] -7936, 0, 39680, 0, -79360, 0, 79360, 0, -39680, 0, 7936;
MAPLE
z := y*sqrt(x^2 - 1): gf := sec(z)*(x + z*sin(z)/y):
ser := series(gf, y, 16): cy := n -> convert(n!*coeff(ser, y, n), polynom):
Trow := n -> `if`(n=-1, [1], PolynomialTools:-CoefficientList(cy(n), x)):
ListTools:-Flatten([seq(Trow(n), n=-1..9)]);
# Alternatively, compute the row polynomials based on offset 0 by recurrence.
RowPoly := proc(n) local E, P, L;
E := proc(n, k) option remember; if k = 0 then return(`if`(n = 0, 1, 0)) fi;
E(n, k-1) + E(n-1, n-k) end:
P := proc(n) option remember; `if`(n < 2, x^n,
x*P(n-1) - ((1 + (-1)^n)/2)*P(n-2)) end:
# `if`(n = 0, 1, sort(expand(P(n)*E(n-1, n-1)), x, ascending)):
L := n -> PolynomialTools:-CoefficientList(P(n), x):
`if`(n = 0, [1], L(n)*E(n-1, n-1)):
end: for n from 0 to 9 do RowPoly(n) end;
# Alternative:
T := (n, k) -> if n <= 1 then k^n else A178111(n, k)*A000111(n-1) fi:
seq(seq(T(n, k), k=0..n), n=0..10);
MATHEMATICA
z := y Sqrt[x^2 - 1]; gf := Sec[z](x + z Sin[z]/y); ser := Series[gf, {y, 0, 16}];
cy[-1] := {1}; cy[n_] := n! Coefficient[ser, y, n];
row[n_] := CoefficientList[cy[ n], x]; Table[row[n], {n, -1, 9}] // Flatten
PROG
(SageMath)
def A326722(n, k):
if n == 0: return 1
if is_odd(n-k): return 0
b = I^(n-k)*binomial(floor(n/2), floor(k/2))
if is_odd(n): return b*I^(n-1)*euler_number(n-1)
return 2*b*psi(n-1, 1/2)/pi^n
for n in range(11): print([A326722(n, k) for k in range(n+1)])
CROSSREFS
T(n, 0) = -A155585(n) for n >= 1.
T(n, 1) = A122045(n) for n >= 0.
|T(2*n-1, 2)| = A024255(n) for n >= 0.
T(n, 3) = A326719(n) for n >= 0.
T(n, 4) = A326718(n) for n >= 0.
Sequence in context: A356771 A053118 A175682 * A349127 A279228 A181481
KEYWORD
sign,tabl
AUTHOR
Peter Luschny, Aug 08 2019
STATUS
approved