Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #28 Aug 12 2019 05:33:19
%S 1,0,1,-1,0,1,0,-1,0,1,2,0,-4,0,2,0,5,0,-10,0,5,-16,0,48,0,-48,0,16,0,
%T -61,0,183,0,-183,0,61,272,0,-1088,0,1632,0,-1088,0,272,0,1385,0,
%U -5540,0,8310,0,-5540,0,1385,-7936,0,39680,0,-79360,0,79360,0,-39680,0,7936
%N T(n, k) = n! * [x^k] [y^n] sec(z)(x + z*sin(z)/y) where z = y*sqrt(x^2 - 1) for 0 <= k <= n+1 and T(-1, 0) = 1, triangle read by rows.
%F T(n, k) = A178111(n, k)*A000111(n-1) if n > 1 else k^n, assuming 0 based triangle.
%F Exponential generating functions for the columns (n >= 0) are:
%F egf_col0(x) = -tanh(x).
%F egf_col1(x) = sech(x).
%F egf_col2(x) = (tanh(x) + x*sech(x)^2)/2.
%F egf_col3(x) = x*tanh(x)*sech(x)/2.
%F egf_col4(x) = (tanh(x) + x*(2*x*tanh(x) - 1)*sech(x)^2)/8.
%F egf_col5(x) = x*sech(x)*(x + tanh(x) - 2*x*sech(x)^2)/8.
%F egf_col6(x) = (3*tanh(x) + x*sech(x)^2*(4*x^2 - 6*x^2*sech(x)^2 - 3))/48.
%F A recurrence of the row polynomials based on offset 0 is given by the recurrence of the Euler-Bernoulli-Entringer numbers A008281 combined with Paul Barry's A178111. See the Maple script.
%e [-1] 1;
%e [ 0] 0, 1;
%e [ 1] -1, 0, 1;
%e [ 2] 0, -1, 0, 1;
%e [ 3] 2, 0, -4, 0, 2;
%e [ 4] 0, 5, 0, -10, 0, 5;
%e [ 5] -16, 0, 48, 0, -48, 0, 16;
%e [ 6] 0, -61, 0, 183, 0, -183, 0, 61;
%e [ 7] 272, 0, -1088, 0, 1632, 0, -1088, 0, 272;
%e [ 8] 0, 1385, 0, -5540, 0, 8310, 0, -5540, 0, 1385;
%e [ 9] -7936, 0, 39680, 0, -79360, 0, 79360, 0, -39680, 0, 7936;
%p z := y*sqrt(x^2 - 1): gf := sec(z)*(x + z*sin(z)/y):
%p ser := series(gf, y, 16): cy := n -> convert(n!*coeff(ser, y, n), polynom):
%p Trow := n -> `if`(n=-1, [1], PolynomialTools:-CoefficientList(cy(n), x)):
%p ListTools:-Flatten([seq(Trow(n), n=-1..9)]);
%p # Alternatively, compute the row polynomials based on offset 0 by recurrence.
%p RowPoly := proc(n) local E, P, L;
%p E := proc(n, k) option remember; if k = 0 then return(`if`(n = 0, 1, 0)) fi;
%p E(n, k-1) + E(n-1, n-k) end:
%p P := proc(n) option remember; `if`(n < 2, x^n,
%p x*P(n-1) - ((1 + (-1)^n)/2)*P(n-2)) end:
%p # `if`(n = 0, 1, sort(expand(P(n)*E(n-1,n-1)), x, ascending)):
%p L := n -> PolynomialTools:-CoefficientList(P(n), x):
%p `if`(n = 0, [1], L(n)*E(n-1, n-1)):
%p end: for n from 0 to 9 do RowPoly(n) end;
%p # Alternative:
%p T := (n, k) -> if n <= 1 then k^n else A178111(n, k)*A000111(n-1) fi:
%p seq(seq(T(n,k), k=0..n), n=0..10);
%t z := y Sqrt[x^2 - 1]; gf := Sec[z](x + z Sin[z]/y); ser := Series[gf, {y, 0, 16}];
%t cy[-1] := {1}; cy[n_] := n! Coefficient[ser, y, n];
%t row[n_] := CoefficientList[cy[ n], x]; Table[row[n], {n, -1, 9}] // Flatten
%o (SageMath)
%o def A326722(n,k):
%o if n == 0: return 1
%o if is_odd(n-k): return 0
%o b = I^(n-k)*binomial(floor(n/2),floor(k/2))
%o if is_odd(n): return b*I^(n-1)*euler_number(n-1)
%o return 2*b*psi(n-1, 1/2)/pi^n
%o for n in range(11): print([A326722(n,k) for k in range(n+1)])
%Y Cf. A000364, A028296, A000182, A000111, A008281, A178111, A012816, A261042, A326721, A326723, A326724.
%Y T(n, 0) = -A155585(n) for n >= 1.
%Y T(n, 1) = A122045(n) for n >= 0.
%Y |T(2*n-1, 2)| = A024255(n) for n >= 0.
%Y T(n, 3) = A326719(n) for n >= 0.
%Y T(n, 4) = A326718(n) for n >= 0.
%K sign,tabl
%O -1,11
%A _Peter Luschny_, Aug 08 2019