login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A349127
Möbius transform of A064989, where A064989 is multiplicative with a(2^e) = 1 and a(p^e) = prevprime(p)^e for odd primes p.
7
1, 0, 1, 0, 2, 0, 4, 0, 2, 0, 6, 0, 10, 0, 2, 0, 12, 0, 16, 0, 4, 0, 18, 0, 6, 0, 4, 0, 22, 0, 28, 0, 6, 0, 8, 0, 30, 0, 10, 0, 36, 0, 40, 0, 4, 0, 42, 0, 20, 0, 12, 0, 46, 0, 12, 0, 16, 0, 52, 0, 58, 0, 8, 0, 20, 0, 60, 0, 18, 0, 66, 0, 70, 0, 6, 0, 24, 0, 72, 0, 8, 0, 78, 0, 24, 0, 22, 0, 82, 0, 40, 0, 28, 0, 32
OFFSET
1,5
COMMENTS
The multiplicative definition of this sequence ("Möbius transform of prime shift towards lesser primes") differs from otherwise similarly defined A349128 (Euler phi applied to A064989) only in that here a(2^e) = 0, while A349128(2^e) = 1.
Compare the situation with A003961 ("prime shift towards larger primes"), where A003972(n) = A000010(A003961(n)) is also the Möbius transform of A003961.
FORMULA
Multiplicative with a(2^e) = 0, and for odd primes p, a(p^e) = (q-1)*q^(e-1), where q = prevprime(p), where prevprime is A151799.
If n is odd, then a(n) = A000010(A064989(n)), and if n is even, then a(n) = 0.
a(n) = Sum_{d|n} A008683(d) * A064989(n/d).
For all n >= 1, a(2n-1) = A347115(2n-1) = A348045(2n-1) = A349128(2n-1) = A285702(n).
Sum_{k=1..n} a(k) ~ c * n^2, where c = (16/Pi^4) / Product_{p prime > 2} (1+1/p-q(p)/p^2-q(p)/p^3) = 0.1341718..., where q(p) = prevprime(p) = A151799(p). - Amiram Eldar, Dec 24 2022
MATHEMATICA
f[p_, e_] := ((q = NextPrime[p, -1]) - 1)*q^(e - 1); a[1] = 1; a[n_] := If[EvenQ[n], 0, Times @@ f @@@ FactorInteger[n]]; Array[a, 100] (* Amiram Eldar, Nov 13 2021 *)
PROG
(PARI) A349127(n) = if(!(n%2), 0, my(f = factor(n), q); prod(i=1, #f~, q = precprime(f[i, 1]-1); (q-1)*(q^(f[i, 2]-1))));
(PARI)
A064989(n) = { my(f = factor(n)); if((n>1 && f[1, 1]==2), f[1, 2] = 0); for (i=1, #f~, f[i, 1] = precprime(f[i, 1]-1)); factorback(f); };
A349127(n) = if(n%2, eulerphi(A064989(n)), 0);
(PARI)
A349127(n) = sumdiv(n, d, moebius(n/d)*A064989(d));
CROSSREFS
Agrees with A347115, A348045 and A349128 on odd numbers.
Cf. A000004, A285702 (even and odd bisection).
Sequence in context: A053118 A175682 A326722 * A279228 A181481 A335872
KEYWORD
nonn,mult
AUTHOR
Antti Karttunen, Nov 13 2021
STATUS
approved