login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A349128
a(n) = phi(A064989(n)), where A064989 is multiplicative with a(2^e) = 1 and a(p^e) = prevprime(p)^e for odd primes p, and phi is Euler totient function.
4
1, 1, 1, 1, 2, 1, 4, 1, 2, 2, 6, 1, 10, 4, 2, 1, 12, 2, 16, 2, 4, 6, 18, 1, 6, 10, 4, 4, 22, 2, 28, 1, 6, 12, 8, 2, 30, 16, 10, 2, 36, 4, 40, 6, 4, 18, 42, 1, 20, 6, 12, 10, 46, 4, 12, 4, 16, 22, 52, 2, 58, 28, 8, 1, 20, 6, 60, 12, 18, 8, 66, 2, 70, 30, 6, 16, 24, 10, 72, 2, 8, 36, 78, 4, 24, 40, 22, 6, 82, 4, 40
OFFSET
1,5
COMMENTS
See comments in A349127.
FORMULA
Multiplicative with a(2^e) = 1, and for odd primes p, a(p^e) = (q - 1)*q^(e-1), where q = prevprime(p), where prevprime is A151799.
For odd n, a(n) = A349127(n), for even n, a(n) = a(n/2).
For all n >= 1, a(n) = a(2*n) = a(A000265(n)).
For all n >= 1, a(A000040(1+n)) = A006093(n) = A000040(n)-1.
Sum_{k=1..n} a(k) ~ c * n^2, where c = (64/(3*Pi^4)) / Product_{p prime > 2} (1+1/p-q(p)/p^2-q(p)/p^3) = 0.17889586..., where q(p) = prevprime(p) = A151799(p). - Amiram Eldar, Dec 24 2022
MATHEMATICA
f[p_, e_] := If[p == 2, 1, Module[{q = NextPrime[p, -1]}, (q - 1)*q^(e - 1)]]; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100] (* Amiram Eldar, Dec 24 2022 *)
PROG
(PARI) A349128(n) = { my(f = factor(n), q); prod(i=1, #f~, if(2==f[i, 1], 1, q = precprime(f[i, 1]-1); (q-1)*(q^(f[i, 2]-1)))); };
CROSSREFS
Agrees with A347115, A348045 and A349127 on odd numbers.
Cf. A285702 (odd bisection).
Cf. A000010, A064989, A151799, A349122 (inverse Möbius transform).
Cf. also A003972.
Sequence in context: A181982 A070194 A323300 * A366450 A105584 A072064
KEYWORD
nonn,mult
AUTHOR
Antti Karttunen, Nov 13 2021
STATUS
approved