The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A053118 Triangle of coefficients of Chebyshev's U(n,x) polynomials (exponents in decreasing order). 4
 1, 2, 0, 4, 0, -1, 8, 0, -4, 0, 16, 0, -12, 0, 1, 32, 0, -32, 0, 6, 0, 64, 0, -80, 0, 24, 0, -1, 128, 0, -192, 0, 80, 0, -8, 0, 256, 0, -448, 0, 240, 0, -40, 0, 1, 512, 0, -1024, 0, 672, 0, -160, 0, 10, 0, 1024, 0, -2304, 0, 1792, 0, -560, 0, 60, 0, -1, 2048, 0, -5120, 0, 4608, 0, -1792, 0, 280, 0, -12, 0, 4096, 0, -11264, 0, 11520, 0, -5376 (list; table; graph; refs; listen; history; text; internal format)
 OFFSET 0,2 COMMENTS a(n,m)= A053117(n,n-m) = 2^(n-m)*A049310(n,n-m). G.f. for row polynomials U(n,x) (signed triangle): 1/(1-2*x*z+z^2). Unsigned triangle |a(n,m)| has Fibonacci polynomials F(n+1,2*x) as row polynomials with G.f. 1/(1-2*x*z-z^2). Row sums (unsigned triangle) A000129(n+1) (Pell). Row sums (signed triangle) A000027(n+1) (natural numbers). REFERENCES Theodore J. Rivlin, Chebyshev polynomials: from approximation theory to algebra and number theory, 2. ed., Wiley, New York, 1990. LINKS T. D. Noe, Rows n=0..100 of triangle, flattened FORMULA a(n, m) := 0 if n= 0 is even else 0. EXAMPLE 1; 2,0; 4,0,-1; 8,0,-4,0; 16,0,-12,0,1; ... E.g. fourth row (n=3) {8,0,-4,0} corresponds to polynomial U(3,x)= 8*x^3-4*x. MATHEMATICA Flatten[ Table[ Reverse[ CoefficientList[ ChebyshevU[n, x], x]], {n, 0, 12}]] (* Jean-François Alcover, Jan 20 2012 *) CROSSREFS Cf. A053117, A049310, A000129. Triangle reflected without zeros: A008312 (the main entry). Sequence in context: A178515 A051517 A289359 * A175682 A326722 A279228 Adjacent sequences:  A053115 A053116 A053117 * A053119 A053120 A053121 KEYWORD easy,nice,sign,tabl AUTHOR STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified April 4 05:34 EDT 2020. Contains 333212 sequences. (Running on oeis4.)