OFFSET
0,2
COMMENTS
G.f. for row polynomials U(n,x) (signed triangle): 1/(1-2*x*z+z^2). Unsigned triangle |a(n,m)| has Fibonacci polynomials F(n+1,2*x) as row polynomials with G.f. 1/(1-2*x*z-z^2).
REFERENCES
Theodore J. Rivlin, Chebyshev polynomials: from approximation theory to algebra and number theory, 2. ed., Wiley, New York, 1990.
LINKS
FORMULA
a(n, m) := 0 if n<m or m odd, else ((-1)^(3*m/2))*(2^(n-m))*binomial(n-m/2, n-m); a(n, m) = 2*a(n-1, m) - a(n-2, m-2), a(n, -2) := 0 =: a(n, -1), a(0, 0)=1, a(n, m)= 0 if n<m or m odd; G.f. for m-th column (signed triangle): (-1)^(3*m/2)*x^m/(1-2*x)^(m/2+1) if m >= 0 is even else 0.
EXAMPLE
1;
2,0;
4,0,-1;
8,0,-4,0;
16,0,-12,0,1;
... E.g. fourth row (n=3) {8,0,-4,0} corresponds to polynomial U(3,x)= 8*x^3-4*x.
MATHEMATICA
Flatten[ Table[ Reverse[ CoefficientList[ ChebyshevU[n, x], x]], {n, 0, 12}]] (* Jean-François Alcover, Jan 20 2012 *)
CROSSREFS
KEYWORD
AUTHOR
STATUS
approved