Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #35 Dec 24 2022 03:50:46
%S 1,0,1,0,2,0,4,0,2,0,6,0,10,0,2,0,12,0,16,0,4,0,18,0,6,0,4,0,22,0,28,
%T 0,6,0,8,0,30,0,10,0,36,0,40,0,4,0,42,0,20,0,12,0,46,0,12,0,16,0,52,0,
%U 58,0,8,0,20,0,60,0,18,0,66,0,70,0,6,0,24,0,72,0,8,0,78,0,24,0,22,0,82,0,40,0,28,0,32
%N Möbius transform of A064989, where A064989 is multiplicative with a(2^e) = 1 and a(p^e) = prevprime(p)^e for odd primes p.
%C The multiplicative definition of this sequence ("Möbius transform of prime shift towards lesser primes") differs from otherwise similarly defined A349128 (Euler phi applied to A064989) only in that here a(2^e) = 0, while A349128(2^e) = 1.
%C Compare the situation with A003961 ("prime shift towards larger primes"), where A003972(n) = A000010(A003961(n)) is also the Möbius transform of A003961.
%H Antti Karttunen, <a href="/A349127/b349127.txt">Table of n, a(n) for n = 1..20000</a>
%H <a href="/index/Pri#prime_indices">Index entries for sequences computed from indices in prime factorization</a>.
%F Multiplicative with a(2^e) = 0, and for odd primes p, a(p^e) = (q-1)*q^(e-1), where q = prevprime(p), where prevprime is A151799.
%F If n is odd, then a(n) = A000010(A064989(n)), and if n is even, then a(n) = 0.
%F a(n) = Sum_{d|n} A008683(d) * A064989(n/d).
%F For all n >= 1, a(2n-1) = A347115(2n-1) = A348045(2n-1) = A349128(2n-1) = A285702(n).
%F Sum_{k=1..n} a(k) ~ c * n^2, where c = (16/Pi^4) / Product_{p prime > 2} (1+1/p-q(p)/p^2-q(p)/p^3) = 0.1341718..., where q(p) = prevprime(p) = A151799(p). - _Amiram Eldar_, Dec 24 2022
%t f[p_, e_] := ((q = NextPrime[p, -1]) - 1)*q^(e - 1); a[1] = 1; a[n_] := If[EvenQ[n], 0, Times @@ f @@@ FactorInteger[n]]; Array[a, 100] (* _Amiram Eldar_, Nov 13 2021 *)
%o (PARI) A349127(n) = if(!(n%2),0, my(f = factor(n), q); prod(i=1, #f~, q = precprime(f[i,1]-1); (q-1)*(q^(f[i,2]-1))));
%o (PARI)
%o A064989(n) = { my(f = factor(n)); if((n>1 && f[1,1]==2), f[1,2] = 0); for (i=1, #f~, f[i,1] = precprime(f[i,1]-1)); factorback(f); };
%o A349127(n) = if(n%2, eulerphi(A064989(n)), 0);
%o (PARI)
%o A349127(n) = sumdiv(n,d,moebius(n/d)*A064989(d));
%Y Agrees with A347115, A348045 and A349128 on odd numbers.
%Y Cf. A000004, A285702 (even and odd bisection).
%Y Cf. A000010, A008683, A064989, A151799.
%Y Cf. also A003961, A003972, A349125, A349136.
%K nonn,mult
%O 1,5
%A _Antti Karttunen_, Nov 13 2021