login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A237650
G.f. satisfies: A(x) = (1+x+x^2)^3 * A(x^2)^2.
3
1, 3, 12, 25, 75, 144, 357, 615, 1380, 2285, 4767, 7488, 14817, 22707, 43068, 63769, 116667, 169584, 301589, 427815, 741396, 1037149, 1761087, 2418432, 4025153, 5465955, 8956716, 11986009, 19330347, 25633296, 40835973, 53508711, 84129156, 109392269, 170278047, 219206976
OFFSET
0,2
FORMULA
The odd-indexed bisection of A195586.
The 3rd self-convolution of A237651.
G.f. A(x) satisfies:
(1) A(x) = Product_{n>=0} ( 1 + x^(2^n) + x^(2*2^n) )^(3*2^n).
(2) A(x) / A(-x) = (1+x+x^2)^3 / (1-x+x^2)^3.
EXAMPLE
G.f.: A(x) = 1 + 3*x + 12*x^2 + 25*x^3 + 75*x^4 + 144*x^5 + 357*x^6 +...
where:
A(x) = (1+x+x^2)^3 * (1+x^2+x^4)^6 * (1+x^4+x^8)^12 * (1+x^8+x^16)^24 * (1+x^16+x^32)^48 *...* (1 + x^(2^n) + x^(2*2^n))^(3*2^n) *...
PROG
(PARI) {a(n)=local(A=1+x); for(i=1, #binary(n), A=(1+x+x^2)^3*subst(A^2, x, x^2) +x*O(x^n)); polcoeff(A, n)}
for(n=0, 50, print1(a(n), ", "))
(PARI) {a(n)=local(A=1+x); A=prod(k=0, #binary(n), (1+x^(2^k)+x^(2*2^k)+x*O(x^n))^(3*2^k)); polcoeff(A, n)}
for(n=0, 50, print1(a(n), ", "))
CROSSREFS
KEYWORD
nonn
AUTHOR
Paul D. Hanna, May 04 2014
STATUS
approved