login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 56th year, we are closing in on 350,000 sequences, and we’ve crossed 9,700 citations (which often say “discovered thanks to the OEIS”).

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A237649 a(n) = A163659(n^3), where A163659 is the logarithmic derivative of Stern's diatomic series (A002487). 4
1, 15, -2, 127, 1, -30, 1, 1023, -2, 15, 1, -254, 1, 15, -2, 8191, 1, -30, 1, 127, -2, 15, 1, -2046, 1, 15, -2, 127, 1, -30, 1, 65535, -2, 15, 1, -254, 1, 15, -2, 1023, 1, -30, 1, 127, -2, 15, 1, -16382, 1, 15, -2, 127, 1, -30, 1, 1023, -2, 15, 1, -254, 1, 15, -2, 524287, 1, -30, 1, 127 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,2

COMMENTS

Multiplicative because A163659 is. - Andrew Howroyd, Jul 27 2018

LINKS

Paul D. Hanna, Table of n, a(n) for n = 1..1000

FORMULA

L.g.f.: log(1+x+x^2) + Sum_{n>=0} 7*4^n * log(1 + x^(2*2^n) + x^(4*2^n)) = Sum_{n>=1} a(n)*x^n/n.

G.f.: x*(1+2*x)/(1+x+x^2) + Sum_{n>=0} 14*8^n * x^(2*2^n) * (1 + 2*x^(2*2^n)) / (1 + x^(2*2^n) + x^(4*2^n)).

EXAMPLE

L.g.f.: L(x) = x + 15*x^2/2 - 2*x^3/3 + 127*x^4/4 + x^5/5 - 30*x^6/6 + x^7/7 + 1023*x^8/8 +...+ A163659(n^3)*x^n/n +...

where

exp(L(x)) = 1 + x + 8*x^2 + 7*x^3 + 63*x^4 + 56*x^5 + 329*x^6 + 273*x^7 + 1736*x^8 +...+ A237646(n)*x^n +...

PROG

(PARI) {A163659(n)=if(n<1, 0, if(n%3, 1, -2)*sigma(2^valuation(n, 2)))}

{a(n)=A163659(n^3)}

for(n=1, 64, print1(a(n), ", "))

(PARI) {a(n)=local(X=x+x*O(x^n), A); A=log(1+X+X^2) + sum(k=0, #binary(n), 7*4^k*log(1 + X^(2*2^k) + X^(4*2^k))); n*polcoeff(A, n)}

for(n=1, 64, print1(a(n), ", "))

CROSSREFS

Cf. A237646, A163659.

Sequence in context: A076595 A220376 A040224 * A040217 A040218 A226379

Adjacent sequences:  A237646 A237647 A237648 * A237650 A237651 A237652

KEYWORD

sign,mult

AUTHOR

Paul D. Hanna, May 03 2014

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified December 9 08:41 EST 2021. Contains 349627 sequences. (Running on oeis4.)