Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #32 Jan 27 2024 10:30:53
%S 1,-17,-82,16,-626,1394,-2402,0,81,10642,-14642,-1312,-28562,40834,
%T 51332,0,-83522,-1377,-130322,-10016,196964,248914,-279842,0,625,
%U 485554,0,-38432,-707282,-872644,-923522,0,1200644,1419874,1503652,1296,-1874162
%N Dirichlet inverse of sigma_4 function (A001159).
%C sigma_4(n) is the sum of the 4th powers of the divisors of n (A001159).
%D Tom M. Apostol, Introduction to Analytic Number Theory, Springer-Verlag, 1976, page 39.
%H G. C. Greubel, <a href="/A053826/b053826.txt">Table of n, a(n) for n = 1..10000</a>
%F Dirichlet g.f.: 1/(zeta(x)*zeta(x-4)).
%F Multiplicative with a(p^1) = -1 - p^4, a(p^2) = p^4, a(p^e) = 0 for e>=3. - _Mitch Harris_, Jun 27 2005
%F a(n) = Sum_{d|n} mu(n/d)*mu(d)*d^4. - _Ilya Gutkovskiy_, Nov 06 2018
%F From _Peter Bala_, Jan 17 2024: (Start)
%F a(n) = Sum_{d divides n} d * A053825(d) * phi(n/d), where the totient function phi(n) = A000010(n).
%F a(n) = Sum_{d divides n} d^2 * (sigma_2(d))^(-1) * J_2(n/d),
%F a(n) = Sum_{d divides n} d^3 * (sigma_1(d))^(-1) * J_3(n/d), and for k >= 0,
%F a(n) = Sum_{d divides n} d^4 * (sigma_k(d))^(-1) * J_(k+4)(n/d), where (sigma_k(n))^(-1) denotes the Dirichlet inverse of the divisor sum function sigma_k(n) and J_k(n) denotes the Jordan totient function. (End)
%t Table[DivisorSum[n, MoebiusMu[n/#]*MoebiusMu[#]*#^4 &], {n, 1, 50}] (* _G. C. Greubel_, Nov 07 2018 *)
%t f[p_, e_] := If[e == 1, -p^4 - 1, If[e == 2, p^4, 0]]; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100] (* _Amiram Eldar_, Sep 16 2020 *)
%o (PARI) a(n) = sumdiv(n, d, moebius(n/d)*moebius(d)*d^4); \\ _Michel Marcus_, Nov 06 2018
%o (PARI) for(n=1, 100, print1(direuler(p=2, n, (1 - X)*(1 - p^4*X))[n], ", ")) \\ _Vaclav Kotesovec_, Sep 16 2020
%Y Dirichlet inverse of sigma_k(n): A007427 (k = 0), A046692 (k = 1), A053822(k = 2), A053825 (k = 3), A178448 (k = 5).
%Y Cf. A001159, A046099 (where a(n) = 0).
%K sign,mult
%O 1,2
%A _N. J. A. Sloane_, Apr 08 2000