OFFSET
0,3
COMMENTS
Also the fixed point of the morphism 0->{0,1,2,3,4,5}, 1->{1,2,3,4,5,6}, 2->{2,3,4,5,6,7}, etc. - Robert G. Wilson v, Jul 27 2006
Sum of six consecutive terms is (15,21,27,33,39,45; 21,27,33,39,45,51; 27,33,39,45,51,57; and so on). - Vincenzo Librandi, Aug 02 2010
LINKS
Indranil Ghosh, Table of n, a(n) for n = 0..10000
Jeffrey O. Shallit, Problem 6450, Advanced Problems, The American Mathematical Monthly, Vol. 91, No. 1 (1984), pp. 59-60; Two series, solution to Problem 6450, ibid., Vol. 92, No. 7 (1985), pp. 513-514.
Robert Walker, Self Similar Sloth Canon Number Sequences.
Eric Weisstein's World of Mathematics, Digit Sum.
FORMULA
From Benoit Cloitre, Dec 19 2002: (Start)
a(0) = 0, a(6n+i) = a(n)+i for 0 <= i <= 5.
a(n) = n-5*(Sum_{k>0} floor(n/6^k)) = n-5*A054895(n). (End)
a(n) = A138530(n,6) for n > 5. - Reinhard Zumkeller, Mar 26 2008
a(n) = Sum_{k>=0} A030567(n,k). - Philippe Deléham, Oct 21 2011
a(0) = 0; a(n) = a(n - 6^floor(log_6(n))) + 1. - Ilya Gutkovskiy, Aug 23 2019
Sum_{n>=1} a(n)/(n*(n+1)) = 6*log(6)/5 (Shallit, 1984). - Amiram Eldar, Jun 03 2021
EXAMPLE
a(20)=3+2=5 because 20 is written as 32 base 6.
From Omar E. Pol, Feb 21 2010: (Start)
It appears that this can be written as a triangle :
0,
1,2,3,4,5,
1,2,3,4,5,6,2,3,4,5,6,7,3,4,5,6,7,8,4,5,6,7,8,9,5,6,7,8,9,10,
1,2,3,4,5,6,2,3,4,5,6,7,3,4,5,6,7,8,4,5,6,7,8,9,5,6,7,8,9,10,6,7,8,9,10,11,2...
where the rows converge to A173526.
See the conjecture in the entry A000120. (End)
MATHEMATICA
Table[Plus @@ IntegerDigits[n, 6], {n, 0, 100}] (* or *)
Nest[ Flatten[ #1 /. a_Integer -> Table[a + i, {i, 0, 5}]] &, {0}, 4] (* Robert G. Wilson v, Jul 27 2006 *)
PROG
(PARI) a(n)=if(n<1, 0, if(n%6, a(n-1)+1, a(n/6)))
(PARI) a(n) = sumdigits(n, 6); \\ Michel Marcus, Aug 24 2019
(Magma) [&+Intseq(n, 6):n in [0..105]]; // Marius A. Burtea, Aug 24 2019
CROSSREFS
KEYWORD
base,nonn
AUTHOR
Henry Bottomley, Mar 28 2000
STATUS
approved