|
|
A030567
|
|
Triangle T(n,k): Write n in base 6, reverse order of digits, to get row n.
|
|
29
|
|
|
0, 1, 2, 3, 4, 5, 0, 1, 1, 1, 2, 1, 3, 1, 4, 1, 5, 1, 0, 2, 1, 2, 2, 2, 3, 2, 4, 2, 5, 2, 0, 3, 1, 3, 2, 3, 3, 3, 4, 3, 5, 3, 0, 4, 1, 4, 2, 4, 3, 4, 4, 4, 5, 4, 0, 5, 1, 5, 2, 5, 3, 5, 4, 5, 5, 5, 0, 0, 1, 1, 0, 1, 2, 0, 1, 3, 0, 1, 4, 0, 1, 5, 0, 1, 0, 1, 1, 1, 1, 1, 2
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
0,3
|
|
COMMENTS
|
If columns are numbered starting with k=0, then T(n,k) contains the coefficient of 6^k in n's base-6 expansion. - M. F. Hasler, Jul 21 2013
|
|
LINKS
|
|
|
MATHEMATICA
|
Flatten[Table[Reverse[IntegerDigits[n, 6]], {n, 0, 50}]] (* Harvey P. Dale, Sep 27 2015 *)
|
|
PROG
|
(PARI) A030567(n, k=-1)=/*k<0&&error("Flattened sequence not yet implemented.")*/n\6^k%6 \\ Assuming that columns start with k=0, cf. comment. TO DO: implement flattened sequence, such that A030567(n)=a(n). - M. F. Hasler, Jul 21 2013
|
|
CROSSREFS
|
See A030548 for a quite complete list of crossreferences.
|
|
KEYWORD
|
nonn,base,tabf,less
|
|
AUTHOR
|
|
|
EXTENSIONS
|
|
|
STATUS
|
approved
|
|
|
|