login
A030567
Triangle T(n,k): Write n in base 6 and reverse order of digits to get row n.
29
0, 1, 2, 3, 4, 5, 0, 1, 1, 1, 2, 1, 3, 1, 4, 1, 5, 1, 0, 2, 1, 2, 2, 2, 3, 2, 4, 2, 5, 2, 0, 3, 1, 3, 2, 3, 3, 3, 4, 3, 5, 3, 0, 4, 1, 4, 2, 4, 3, 4, 4, 4, 5, 4, 0, 5, 1, 5, 2, 5, 3, 5, 4, 5, 5, 5, 0, 0, 1, 1, 0, 1, 2, 0, 1, 3, 0, 1, 4, 0, 1, 5, 0, 1, 0, 1, 1, 1, 1, 1, 2
OFFSET
0,3
COMMENTS
If columns are numbered starting with k=0, then T(n,k) contains the coefficient of 6^k in n's base-6 expansion. - M. F. Hasler, Jul 21 2013
MATHEMATICA
Flatten[Table[Reverse[IntegerDigits[n, 6]], {n, 0, 50}]] (* Harvey P. Dale, Sep 27 2015 *)
PROG
(PARI) A030567(n, k=-1)=/*k<0&&error("Flattened sequence not yet implemented.")*/n\6^k%6 \\ Assuming that columns start with k=0, cf. comment. TO DO: implement flattened sequence, such that A030567(n)=a(n). - M. F. Hasler, Jul 21 2013
CROSSREFS
See A030548 for a quite complete list of crossreferences.
Cf. A030568 - A030573 for positions of a given digit.
Cf. A030575 - A030580 for run lengths, A030581 - A030585 for more.
Row sums (same as those of A030548) are in A053827.
Cf. A030308, A030341, A030386, A031235, A031007, A031045, A031087, A031298 for the base-2 to base-10 analogs.
Sequence in context: A336206 A303534 A369183 * A049265 A010875 A260187
KEYWORD
nonn,base,tabf,less
EXTENSIONS
Initial 0 and better name from Philippe Deléham, Oct 20 2011
Edited and crossrefs added by M. F. Hasler, Jul 21 2013
STATUS
approved