%I #24 Dec 30 2023 10:17:57
%S 0,1,2,3,4,5,0,1,1,1,2,1,3,1,4,1,5,1,0,2,1,2,2,2,3,2,4,2,5,2,0,3,1,3,
%T 2,3,3,3,4,3,5,3,0,4,1,4,2,4,3,4,4,4,5,4,0,5,1,5,2,5,3,5,4,5,5,5,0,0,
%U 1,1,0,1,2,0,1,3,0,1,4,0,1,5,0,1,0,1,1,1,1,1,2
%N Triangle T(n,k): Write n in base 6 and reverse order of digits to get row n.
%C If columns are numbered starting with k=0, then T(n,k) contains the coefficient of 6^k in n's base-6 expansion. - _M. F. Hasler_, Jul 21 2013
%t Flatten[Table[Reverse[IntegerDigits[n,6]],{n,0,50}]] (* _Harvey P. Dale_, Sep 27 2015 *)
%o (PARI) A030567(n,k=-1)=/*k<0&&error("Flattened sequence not yet implemented.")*/n\6^k%6 \\ Assuming that columns start with k=0, cf. comment. TO DO: implement flattened sequence, such that A030567(n)=a(n). - _M. F. Hasler_, Jul 21 2013
%Y See A030548 for a quite complete list of crossreferences.
%Y Cf. A030568 - A030573 for positions of a given digit.
%Y Cf. A030575 - A030580 for run lengths, A030581 - A030585 for more.
%Y Row sums (same as those of A030548) are in A053827.
%Y Cf. A030308, A030341, A030386, A031235, A031007, A031045, A031087, A031298 for the base-2 to base-10 analogs.
%K nonn,base,tabf,less
%O 0,3
%A _Clark Kimberling_
%E Initial 0 and better name from _Philippe Deléham_, Oct 20 2011
%E Edited and crossrefs added by _M. F. Hasler_, Jul 21 2013