|
|
A031298
|
|
Triangle T(n,k): write n in base 10, reverse order of digits.
|
|
41
|
|
|
0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 0, 1, 1, 1, 2, 1, 3, 1, 4, 1, 5, 1, 6, 1, 7, 1, 8, 1, 9, 1, 0, 2, 1, 2, 2, 2, 3, 2, 4, 2, 5, 2, 6, 2, 7, 2, 8, 2, 9, 2, 0, 3, 1, 3, 2, 3, 3, 3, 4, 3, 5, 3, 6, 3, 7, 3, 8, 3, 9, 3, 0, 4, 1, 4, 2, 4, 3, 4, 4, 4, 5, 4, 6, 4, 7, 4, 8, 4, 9, 4, 0
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
0,3
|
|
COMMENTS
|
The length of n-th row is given in A055642(n). - Reinhard Zumkeller, Jul 04 2012
According to the formula for T(n,1), columns are numbered starting with 1. One might also number columns starting with the offset 0, as to have the coefficient of 10^k in column k. - M. F. Hasler, Jul 21 2013
|
|
LINKS
|
Reinhard Zumkeller, Rows n = 0..2500 of triangle, flattened
|
|
FORMULA
|
T(n,1) = A010879(n); T(n,A055642(n)) = A000030(n). - Reinhard Zumkeller, Jul 04 2012
|
|
MATHEMATICA
|
Table[Reverse[IntegerDigits[n]], {n, 0, 50}]//Flatten (* Harvey P. Dale, Mar 07 2023 *)
|
|
PROG
|
(Haskell)
a031298 n k = a031298_tabf !! n !! k
a031298_row n = a031298_tabf !! n
a031298_tabf = iterate succ [0] where
succ [] = [1]
succ (9:ds) = 0 : succ ds
succ (d:ds) = (d + 1) : ds
-- Reinhard Zumkeller, Jul 04 2012
(PARI) T(n, k)=n\10^(k-1)%10 \\ M. F. Hasler, Jul 21 2013
|
|
CROSSREFS
|
Cf. A030308, A030341, A030386, A031235, A030567, A031007, A031045, A031087 for the base-2 to base-9 analogs.
Sequence in context: A252648 A054054 A115353 * A004428 A004429 A338379
Adjacent sequences: A031295 A031296 A031297 * A031299 A031300 A031301
|
|
KEYWORD
|
nonn,base,tabf,less,look
|
|
AUTHOR
|
Clark Kimberling
|
|
EXTENSIONS
|
Initial 0 and better name by Philippe Deléham, Oct 20 2011
Edited by M. F. Hasler, Jul 21 2013
|
|
STATUS
|
approved
|
|
|
|